R
↳Dependency Pair Analysis
AF(g(X), Y) -> AF(mark(X), f(g(X), Y))
AF(g(X), Y) -> MARK(X)
MARK(f(X1, X2)) -> AF(mark(X1), X2)
MARK(f(X1, X2)) -> MARK(X1)
MARK(g(X)) -> MARK(X)
R
↳DPs
→DP Problem 1
↳Negative Polynomial Order
MARK(g(X)) -> MARK(X)
MARK(f(X1, X2)) -> MARK(X1)
MARK(f(X1, X2)) -> AF(mark(X1), X2)
AF(g(X), Y) -> MARK(X)
AF(g(X), Y) -> AF(mark(X), f(g(X), Y))
af(g(X), Y) -> af(mark(X), f(g(X), Y))
af(X1, X2) -> f(X1, X2)
mark(f(X1, X2)) -> af(mark(X1), X2)
mark(g(X)) -> g(mark(X))
innermost
MARK(g(X)) -> MARK(X)
AF(g(X), Y) -> MARK(X)
AF(g(X), Y) -> AF(mark(X), f(g(X), Y))
mark(f(X1, X2)) -> af(mark(X1), X2)
mark(g(X)) -> g(mark(X))
af(g(X), Y) -> af(mark(X), f(g(X), Y))
af(X1, X2) -> f(X1, X2)
POL( MARK(x1) ) = x1
POL( g(x1) ) = x1 + 1
POL( AF(x1, x2) ) = x1
POL( f(x1, x2) ) = x1
POL( mark(x1) ) = x1
POL( af(x1, x2) ) = x1
R
↳DPs
→DP Problem 1
↳Neg POLO
→DP Problem 2
↳Dependency Graph
MARK(f(X1, X2)) -> MARK(X1)
MARK(f(X1, X2)) -> AF(mark(X1), X2)
af(g(X), Y) -> af(mark(X), f(g(X), Y))
af(X1, X2) -> f(X1, X2)
mark(f(X1, X2)) -> af(mark(X1), X2)
mark(g(X)) -> g(mark(X))
innermost
R
↳DPs
→DP Problem 1
↳Neg POLO
→DP Problem 2
↳DGraph
...
→DP Problem 3
↳Usable Rules (Innermost)
MARK(f(X1, X2)) -> MARK(X1)
af(g(X), Y) -> af(mark(X), f(g(X), Y))
af(X1, X2) -> f(X1, X2)
mark(f(X1, X2)) -> af(mark(X1), X2)
mark(g(X)) -> g(mark(X))
innermost
R
↳DPs
→DP Problem 1
↳Neg POLO
→DP Problem 2
↳DGraph
...
→DP Problem 4
↳Size-Change Principle
MARK(f(X1, X2)) -> MARK(X1)
none
innermost
|
|
trivial
f(x1, x2) -> f(x1, x2)