Term Rewriting System R:
[X, Y, X1, X2]
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

ACTIVE(f(g(X), Y)) -> F(X, f(g(X), Y))
ACTIVE(f(X1, X2)) -> F(active(X1), X2)
ACTIVE(f(X1, X2)) -> ACTIVE(X1)
ACTIVE(g(X)) -> G(active(X))
ACTIVE(g(X)) -> ACTIVE(X)
F(mark(X1), X2) -> F(X1, X2)
F(ok(X1), ok(X2)) -> F(X1, X2)
G(mark(X)) -> G(X)
G(ok(X)) -> G(X)
PROPER(f(X1, X2)) -> F(proper(X1), proper(X2))
PROPER(f(X1, X2)) -> PROPER(X1)
PROPER(f(X1, X2)) -> PROPER(X2)
PROPER(g(X)) -> G(proper(X))
PROPER(g(X)) -> PROPER(X)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)

Furthermore, R contains five SCCs.


   R
DPs
       →DP Problem 1
Usable Rules (Innermost)
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules


Dependency Pairs:

F(ok(X1), ok(X2)) -> F(X1, X2)
F(mark(X1), X2) -> F(X1, X2)


Rules:


active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




As we are in the innermost case, we can delete all 11 non-usable-rules.


   R
DPs
       →DP Problem 1
UsableRules
           →DP Problem 6
Size-Change Principle
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules


Dependency Pairs:

F(ok(X1), ok(X2)) -> F(X1, X2)
F(mark(X1), X2) -> F(X1, X2)


Rule:

none


Strategy:

innermost




We number the DPs as follows:
  1. F(ok(X1), ok(X2)) -> F(X1, X2)
  2. F(mark(X1), X2) -> F(X1, X2)
and get the following Size-Change Graph(s):
{1, 2} , {1, 2}
1>1
2>2
{1, 2} , {1, 2}
1>1
2=2

which lead(s) to this/these maximal multigraph(s):
{1, 2} , {1, 2}
1>1
2=2
{1, 2} , {1, 2}
1>1
2>2

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)

We obtain no new DP problems.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
Usable Rules (Innermost)
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules


Dependency Pairs:

G(ok(X)) -> G(X)
G(mark(X)) -> G(X)


Rules:


active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




As we are in the innermost case, we can delete all 11 non-usable-rules.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
           →DP Problem 7
Size-Change Principle
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules


Dependency Pairs:

G(ok(X)) -> G(X)
G(mark(X)) -> G(X)


Rule:

none


Strategy:

innermost




We number the DPs as follows:
  1. G(ok(X)) -> G(X)
  2. G(mark(X)) -> G(X)
and get the following Size-Change Graph(s):
{1, 2} , {1, 2}
1>1

which lead(s) to this/these maximal multigraph(s):
{1, 2} , {1, 2}
1>1

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)

We obtain no new DP problems.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
Usable Rules (Innermost)
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules


Dependency Pairs:

ACTIVE(g(X)) -> ACTIVE(X)
ACTIVE(f(X1, X2)) -> ACTIVE(X1)


Rules:


active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




As we are in the innermost case, we can delete all 11 non-usable-rules.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
           →DP Problem 8
Size-Change Principle
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules


Dependency Pairs:

ACTIVE(g(X)) -> ACTIVE(X)
ACTIVE(f(X1, X2)) -> ACTIVE(X1)


Rule:

none


Strategy:

innermost




We number the DPs as follows:
  1. ACTIVE(g(X)) -> ACTIVE(X)
  2. ACTIVE(f(X1, X2)) -> ACTIVE(X1)
and get the following Size-Change Graph(s):
{1, 2} , {1, 2}
1>1

which lead(s) to this/these maximal multigraph(s):
{1, 2} , {1, 2}
1>1

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
g(x1) -> g(x1)
f(x1, x2) -> f(x1, x2)

We obtain no new DP problems.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
Usable Rules (Innermost)
       →DP Problem 5
UsableRules


Dependency Pairs:

PROPER(g(X)) -> PROPER(X)
PROPER(f(X1, X2)) -> PROPER(X2)
PROPER(f(X1, X2)) -> PROPER(X1)


Rules:


active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




As we are in the innermost case, we can delete all 11 non-usable-rules.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
           →DP Problem 9
Size-Change Principle
       →DP Problem 5
UsableRules


Dependency Pairs:

PROPER(g(X)) -> PROPER(X)
PROPER(f(X1, X2)) -> PROPER(X2)
PROPER(f(X1, X2)) -> PROPER(X1)


Rule:

none


Strategy:

innermost




We number the DPs as follows:
  1. PROPER(g(X)) -> PROPER(X)
  2. PROPER(f(X1, X2)) -> PROPER(X2)
  3. PROPER(f(X1, X2)) -> PROPER(X1)
and get the following Size-Change Graph(s):
{1, 2, 3} , {1, 2, 3}
1>1

which lead(s) to this/these maximal multigraph(s):
{1, 2, 3} , {1, 2, 3}
1>1

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
g(x1) -> g(x1)
f(x1, x2) -> f(x1, x2)

We obtain no new DP problems.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
Usable Rules (Innermost)


Dependency Pairs:

TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))


Rules:


active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




As we are in the innermost case, we can delete all 2 non-usable-rules.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
           →DP Problem 10
Negative Polynomial Order


Dependency Pairs:

TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))


Rules:


f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
active(g(X)) -> g(active(X))
active(f(X1, X2)) -> f(active(X1), X2)
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))


Strategy:

innermost




The following Dependency Pair can be strictly oriented using the given order.

TOP(ok(X)) -> TOP(active(X))


Moreover, the following usable rules (regarding the implicit AFS) are oriented.

f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
active(g(X)) -> g(active(X))
active(f(X1, X2)) -> f(active(X1), X2)
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))


Used ordering:
Polynomial Order with Interpretation:

POL( TOP(x1) ) = x1

POL( ok(x1) ) = 1

POL( active(x1) ) = 0

POL( mark(x1) ) = 0

POL( proper(x1) ) = 0

POL( f(x1, x2) ) = x1

POL( g(x1) ) = x1


This results in one new DP problem.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
           →DP Problem 10
Neg POLO
             ...
               →DP Problem 11
Usable Rules (Innermost)


Dependency Pair:

TOP(mark(X)) -> TOP(proper(X))


Rules:


f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
active(g(X)) -> g(active(X))
active(f(X1, X2)) -> f(active(X1), X2)
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))


Strategy:

innermost




As we are in the innermost case, we can delete all 3 non-usable-rules.


   R
DPs
       →DP Problem 1
UsableRules
       →DP Problem 2
UsableRules
       →DP Problem 3
UsableRules
       →DP Problem 4
UsableRules
       →DP Problem 5
UsableRules
           →DP Problem 10
Neg POLO
             ...
               →DP Problem 12
Modular Removal of Rules


Dependency Pair:

TOP(mark(X)) -> TOP(proper(X))


Rules:


f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))


Strategy:

innermost




We have the following set of usable rules:

f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
  POL(proper(x1))=  x1  
  POL(g(x1))=  x1  
  POL(mark(x1))=  1 + x1  
  POL(TOP(x1))=  x1  
  POL(ok(x1))=  x1  
  POL(f(x1, x2))=  x1 + x2  

We have the following set D of usable symbols: {proper, g, mark, TOP, ok, f}
The following Dependency Pairs can be deleted as the lhs is strictly greater than the corresponding rhs:

TOP(mark(X)) -> TOP(proper(X))

No Rules can be deleted.

After the removal, there are no SCCs in the dependency graph which results in no DP problems which have to be solved.


Innermost Termination of R successfully shown.
Duration:
0:00 minutes