R
↳Dependency Pair Analysis
MINUS(n0, Y) -> 0'
MINUS(ns(X), ns(Y)) -> MINUS(activate(X), activate(Y))
MINUS(ns(X), ns(Y)) -> ACTIVATE(X)
MINUS(ns(X), ns(Y)) -> ACTIVATE(Y)
GEQ(ns(X), ns(Y)) -> GEQ(activate(X), activate(Y))
GEQ(ns(X), ns(Y)) -> ACTIVATE(X)
GEQ(ns(X), ns(Y)) -> ACTIVATE(Y)
DIV(s(X), ns(Y)) -> IF(geq(X, activate(Y)), ns(ndiv(nminus(X, activate(Y)), ns(activate(Y)))), n0)
DIV(s(X), ns(Y)) -> GEQ(X, activate(Y))
DIV(s(X), ns(Y)) -> ACTIVATE(Y)
IF(true, X, Y) -> ACTIVATE(X)
IF(false, X, Y) -> ACTIVATE(Y)
ACTIVATE(n0) -> 0'
ACTIVATE(ns(X)) -> S(activate(X))
ACTIVATE(ns(X)) -> ACTIVATE(X)
ACTIVATE(ndiv(X1, X2)) -> DIV(activate(X1), X2)
ACTIVATE(ndiv(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(nminus(X1, X2)) -> MINUS(X1, X2)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Nar
GEQ(ns(X), ns(Y)) -> GEQ(activate(X), activate(Y))
minus(n0, Y) -> 0
minus(ns(X), ns(Y)) -> minus(activate(X), activate(Y))
minus(X1, X2) -> nminus(X1, X2)
geq(X, n0) -> true
geq(n0, ns(Y)) -> false
geq(ns(X), ns(Y)) -> geq(activate(X), activate(Y))
div(0, ns(Y)) -> 0
div(s(X), ns(Y)) -> if(geq(X, activate(Y)), ns(ndiv(nminus(X, activate(Y)), ns(activate(Y)))), n0)
div(X1, X2) -> ndiv(X1, X2)
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
0 -> n0
s(X) -> ns(X)
activate(n0) -> 0
activate(ns(X)) -> s(activate(X))
activate(ndiv(X1, X2)) -> div(activate(X1), X2)
activate(nminus(X1, X2)) -> minus(X1, X2)
activate(X) -> X
innermost
GEQ(ns(X), ns(Y)) -> GEQ(activate(X), activate(Y))
activate(n0) -> 0
activate(ns(X)) -> s(activate(X))
activate(ndiv(X1, X2)) -> div(activate(X1), X2)
activate(nminus(X1, X2)) -> minus(X1, X2)
activate(X) -> X
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
geq(X, n0) -> true
geq(n0, ns(Y)) -> false
geq(ns(X), ns(Y)) -> geq(activate(X), activate(Y))
minus(n0, Y) -> 0
minus(ns(X), ns(Y)) -> minus(activate(X), activate(Y))
minus(X1, X2) -> nminus(X1, X2)
div(0, ns(Y)) -> 0
div(s(X), ns(Y)) -> if(geq(X, activate(Y)), ns(ndiv(nminus(X, activate(Y)), ns(activate(Y)))), n0)
div(X1, X2) -> ndiv(X1, X2)
0 -> n0
s(X) -> ns(X)
POL(GEQ(x1, x2)) = 1 + x1 POL(activate(x1)) = x1 POL(geq(x1, x2)) = 0 POL(false) = 0 POL(minus(x1, x2)) = 0 POL(n__s(x1)) = 1 + x1 POL(n__minus(x1, x2)) = 0 POL(true) = 0 POL(if(x1, x2, x3)) = x2 + x3 POL(0) = 0 POL(n__div(x1, x2)) = x1 POL(n__0) = 0 POL(s(x1)) = 1 + x1 POL(div(x1, x2)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 3
↳Dependency Graph
→DP Problem 2
↳Nar
minus(n0, Y) -> 0
minus(ns(X), ns(Y)) -> minus(activate(X), activate(Y))
minus(X1, X2) -> nminus(X1, X2)
geq(X, n0) -> true
geq(n0, ns(Y)) -> false
geq(ns(X), ns(Y)) -> geq(activate(X), activate(Y))
div(0, ns(Y)) -> 0
div(s(X), ns(Y)) -> if(geq(X, activate(Y)), ns(ndiv(nminus(X, activate(Y)), ns(activate(Y)))), n0)
div(X1, X2) -> ndiv(X1, X2)
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
0 -> n0
s(X) -> ns(X)
activate(n0) -> 0
activate(ns(X)) -> s(activate(X))
activate(ndiv(X1, X2)) -> div(activate(X1), X2)
activate(nminus(X1, X2)) -> minus(X1, X2)
activate(X) -> X
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Narrowing Transformation
MINUS(ns(X), ns(Y)) -> ACTIVATE(Y)
ACTIVATE(nminus(X1, X2)) -> MINUS(X1, X2)
ACTIVATE(ndiv(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(ns(X)) -> ACTIVATE(X)
MINUS(ns(X), ns(Y)) -> ACTIVATE(X)
MINUS(ns(X), ns(Y)) -> MINUS(activate(X), activate(Y))
minus(n0, Y) -> 0
minus(ns(X), ns(Y)) -> minus(activate(X), activate(Y))
minus(X1, X2) -> nminus(X1, X2)
geq(X, n0) -> true
geq(n0, ns(Y)) -> false
geq(ns(X), ns(Y)) -> geq(activate(X), activate(Y))
div(0, ns(Y)) -> 0
div(s(X), ns(Y)) -> if(geq(X, activate(Y)), ns(ndiv(nminus(X, activate(Y)), ns(activate(Y)))), n0)
div(X1, X2) -> ndiv(X1, X2)
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
0 -> n0
s(X) -> ns(X)
activate(n0) -> 0
activate(ns(X)) -> s(activate(X))
activate(ndiv(X1, X2)) -> div(activate(X1), X2)
activate(nminus(X1, X2)) -> minus(X1, X2)
activate(X) -> X
innermost
10 new Dependency Pairs are created:
MINUS(ns(X), ns(Y)) -> MINUS(activate(X), activate(Y))
MINUS(ns(n0), ns(Y)) -> MINUS(0, activate(Y))
MINUS(ns(ns(X'')), ns(Y)) -> MINUS(s(activate(X'')), activate(Y))
MINUS(ns(ndiv(X1', X2')), ns(Y)) -> MINUS(div(activate(X1'), X2'), activate(Y))
MINUS(ns(nminus(X1', X2')), ns(Y)) -> MINUS(minus(X1', X2'), activate(Y))
MINUS(ns(X''), ns(Y)) -> MINUS(X'', activate(Y))
MINUS(ns(X), ns(n0)) -> MINUS(activate(X), 0)
MINUS(ns(X), ns(ns(X''))) -> MINUS(activate(X), s(activate(X'')))
MINUS(ns(X), ns(ndiv(X1', X2'))) -> MINUS(activate(X), div(activate(X1'), X2'))
MINUS(ns(X), ns(nminus(X1', X2'))) -> MINUS(activate(X), minus(X1', X2'))
MINUS(ns(X), ns(Y')) -> MINUS(activate(X), Y')
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Nar
→DP Problem 4
↳Remaining Obligation(s)
MINUS(ns(X), ns(Y')) -> MINUS(activate(X), Y')
MINUS(ns(X), ns(nminus(X1', X2'))) -> MINUS(activate(X), minus(X1', X2'))
MINUS(ns(X), ns(ndiv(X1', X2'))) -> MINUS(activate(X), div(activate(X1'), X2'))
MINUS(ns(X), ns(ns(X''))) -> MINUS(activate(X), s(activate(X'')))
MINUS(ns(X), ns(n0)) -> MINUS(activate(X), 0)
MINUS(ns(X''), ns(Y)) -> MINUS(X'', activate(Y))
MINUS(ns(nminus(X1', X2')), ns(Y)) -> MINUS(minus(X1', X2'), activate(Y))
MINUS(ns(ndiv(X1', X2')), ns(Y)) -> MINUS(div(activate(X1'), X2'), activate(Y))
MINUS(ns(ns(X'')), ns(Y)) -> MINUS(s(activate(X'')), activate(Y))
MINUS(ns(n0), ns(Y)) -> MINUS(0, activate(Y))
MINUS(ns(X), ns(Y)) -> ACTIVATE(X)
ACTIVATE(nminus(X1, X2)) -> MINUS(X1, X2)
ACTIVATE(ndiv(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(ns(X)) -> ACTIVATE(X)
MINUS(ns(X), ns(Y)) -> ACTIVATE(Y)
minus(n0, Y) -> 0
minus(ns(X), ns(Y)) -> minus(activate(X), activate(Y))
minus(X1, X2) -> nminus(X1, X2)
geq(X, n0) -> true
geq(n0, ns(Y)) -> false
geq(ns(X), ns(Y)) -> geq(activate(X), activate(Y))
div(0, ns(Y)) -> 0
div(s(X), ns(Y)) -> if(geq(X, activate(Y)), ns(ndiv(nminus(X, activate(Y)), ns(activate(Y)))), n0)
div(X1, X2) -> ndiv(X1, X2)
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
0 -> n0
s(X) -> ns(X)
activate(n0) -> 0
activate(ns(X)) -> s(activate(X))
activate(ndiv(X1, X2)) -> div(activate(X1), X2)
activate(nminus(X1, X2)) -> minus(X1, X2)
activate(X) -> X
innermost