R
↳Dependency Pair Analysis
AAPP(nil, YS) -> MARK(YS)
AAPP(cons(X, XS), YS) -> MARK(X)
AFROM(X) -> MARK(X)
AZWADR(cons(X, XS), cons(Y, YS)) -> AAPP(mark(Y), cons(mark(X), nil))
AZWADR(cons(X, XS), cons(Y, YS)) -> MARK(Y)
AZWADR(cons(X, XS), cons(Y, YS)) -> MARK(X)
MARK(app(X1, X2)) -> AAPP(mark(X1), mark(X2))
MARK(app(X1, X2)) -> MARK(X1)
MARK(app(X1, X2)) -> MARK(X2)
MARK(from(X)) -> AFROM(mark(X))
MARK(from(X)) -> MARK(X)
MARK(zWadr(X1, X2)) -> AZWADR(mark(X1), mark(X2))
MARK(zWadr(X1, X2)) -> MARK(X1)
MARK(zWadr(X1, X2)) -> MARK(X2)
MARK(prefix(X)) -> APREFIX(mark(X))
MARK(prefix(X)) -> MARK(X)
MARK(cons(X1, X2)) -> MARK(X1)
MARK(s(X)) -> MARK(X)
R
↳DPs
→DP Problem 1
↳Negative Polynomial Order
AZWADR(cons(X, XS), cons(Y, YS)) -> MARK(X)
MARK(s(X)) -> MARK(X)
MARK(cons(X1, X2)) -> MARK(X1)
MARK(prefix(X)) -> MARK(X)
MARK(zWadr(X1, X2)) -> MARK(X2)
MARK(zWadr(X1, X2)) -> MARK(X1)
AZWADR(cons(X, XS), cons(Y, YS)) -> MARK(Y)
AZWADR(cons(X, XS), cons(Y, YS)) -> AAPP(mark(Y), cons(mark(X), nil))
MARK(zWadr(X1, X2)) -> AZWADR(mark(X1), mark(X2))
MARK(from(X)) -> MARK(X)
AFROM(X) -> MARK(X)
MARK(from(X)) -> AFROM(mark(X))
MARK(app(X1, X2)) -> MARK(X2)
MARK(app(X1, X2)) -> MARK(X1)
AAPP(cons(X, XS), YS) -> MARK(X)
MARK(app(X1, X2)) -> AAPP(mark(X1), mark(X2))
AAPP(nil, YS) -> MARK(YS)
aapp(nil, YS) -> mark(YS)
aapp(cons(X, XS), YS) -> cons(mark(X), app(XS, YS))
aapp(X1, X2) -> app(X1, X2)
afrom(X) -> cons(mark(X), from(s(X)))
afrom(X) -> from(X)
azWadr(nil, YS) -> nil
azWadr(XS, nil) -> nil
azWadr(cons(X, XS), cons(Y, YS)) -> cons(aapp(mark(Y), cons(mark(X), nil)), zWadr(XS, YS))
azWadr(X1, X2) -> zWadr(X1, X2)
aprefix(L) -> cons(nil, zWadr(L, prefix(L)))
aprefix(X) -> prefix(X)
mark(app(X1, X2)) -> aapp(mark(X1), mark(X2))
mark(from(X)) -> afrom(mark(X))
mark(zWadr(X1, X2)) -> azWadr(mark(X1), mark(X2))
mark(prefix(X)) -> aprefix(mark(X))
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(s(X)) -> s(mark(X))
innermost
AZWADR(cons(X, XS), cons(Y, YS)) -> MARK(X)
MARK(cons(X1, X2)) -> MARK(X1)
MARK(prefix(X)) -> MARK(X)
AZWADR(cons(X, XS), cons(Y, YS)) -> MARK(Y)
AZWADR(cons(X, XS), cons(Y, YS)) -> AAPP(mark(Y), cons(mark(X), nil))
MARK(from(X)) -> MARK(X)
MARK(from(X)) -> AFROM(mark(X))
AAPP(cons(X, XS), YS) -> MARK(X)
azWadr(XS, nil) -> nil
mark(s(X)) -> s(mark(X))
mark(prefix(X)) -> aprefix(mark(X))
azWadr(X1, X2) -> zWadr(X1, X2)
mark(nil) -> nil
aapp(cons(X, XS), YS) -> cons(mark(X), app(XS, YS))
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(from(X)) -> afrom(mark(X))
aapp(nil, YS) -> mark(YS)
mark(zWadr(X1, X2)) -> azWadr(mark(X1), mark(X2))
afrom(X) -> cons(mark(X), from(s(X)))
aapp(X1, X2) -> app(X1, X2)
azWadr(nil, YS) -> nil
afrom(X) -> from(X)
aprefix(X) -> prefix(X)
azWadr(cons(X, XS), cons(Y, YS)) -> cons(aapp(mark(Y), cons(mark(X), nil)), zWadr(XS, YS))
aprefix(L) -> cons(nil, zWadr(L, prefix(L)))
mark(app(X1, X2)) -> aapp(mark(X1), mark(X2))
POL( AZWADR(x1, x2) ) = x1 + x2
POL( cons(x1, x2) ) = x1 + 1
POL( MARK(x1) ) = x1
POL( AFROM(x1) ) = x1
POL( app(x1, x2) ) = x1 + x2
POL( AAPP(x1, x2) ) = x1 + x2
POL( mark(x1) ) = x1
POL( from(x1) ) = x1 + 1
POL( prefix(x1) ) = x1 + 1
POL( s(x1) ) = x1
POL( zWadr(x1, x2) ) = x1 + x2
POL( azWadr(x1, x2) ) = x1 + x2
POL( nil ) = 0
POL( aprefix(x1) ) = x1 + 1
POL( aapp(x1, x2) ) = x1 + x2
POL( afrom(x1) ) = x1 + 1
R
↳DPs
→DP Problem 1
↳Neg POLO
→DP Problem 2
↳Dependency Graph
MARK(s(X)) -> MARK(X)
MARK(zWadr(X1, X2)) -> MARK(X2)
MARK(zWadr(X1, X2)) -> MARK(X1)
MARK(zWadr(X1, X2)) -> AZWADR(mark(X1), mark(X2))
AFROM(X) -> MARK(X)
MARK(app(X1, X2)) -> MARK(X2)
MARK(app(X1, X2)) -> MARK(X1)
MARK(app(X1, X2)) -> AAPP(mark(X1), mark(X2))
AAPP(nil, YS) -> MARK(YS)
aapp(nil, YS) -> mark(YS)
aapp(cons(X, XS), YS) -> cons(mark(X), app(XS, YS))
aapp(X1, X2) -> app(X1, X2)
afrom(X) -> cons(mark(X), from(s(X)))
afrom(X) -> from(X)
azWadr(nil, YS) -> nil
azWadr(XS, nil) -> nil
azWadr(cons(X, XS), cons(Y, YS)) -> cons(aapp(mark(Y), cons(mark(X), nil)), zWadr(XS, YS))
azWadr(X1, X2) -> zWadr(X1, X2)
aprefix(L) -> cons(nil, zWadr(L, prefix(L)))
aprefix(X) -> prefix(X)
mark(app(X1, X2)) -> aapp(mark(X1), mark(X2))
mark(from(X)) -> afrom(mark(X))
mark(zWadr(X1, X2)) -> azWadr(mark(X1), mark(X2))
mark(prefix(X)) -> aprefix(mark(X))
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(s(X)) -> s(mark(X))
innermost
R
↳DPs
→DP Problem 1
↳Neg POLO
→DP Problem 2
↳DGraph
...
→DP Problem 3
↳Negative Polynomial Order
MARK(zWadr(X1, X2)) -> MARK(X2)
MARK(zWadr(X1, X2)) -> MARK(X1)
MARK(app(X1, X2)) -> MARK(X2)
MARK(app(X1, X2)) -> MARK(X1)
AAPP(nil, YS) -> MARK(YS)
MARK(app(X1, X2)) -> AAPP(mark(X1), mark(X2))
MARK(s(X)) -> MARK(X)
aapp(nil, YS) -> mark(YS)
aapp(cons(X, XS), YS) -> cons(mark(X), app(XS, YS))
aapp(X1, X2) -> app(X1, X2)
afrom(X) -> cons(mark(X), from(s(X)))
afrom(X) -> from(X)
azWadr(nil, YS) -> nil
azWadr(XS, nil) -> nil
azWadr(cons(X, XS), cons(Y, YS)) -> cons(aapp(mark(Y), cons(mark(X), nil)), zWadr(XS, YS))
azWadr(X1, X2) -> zWadr(X1, X2)
aprefix(L) -> cons(nil, zWadr(L, prefix(L)))
aprefix(X) -> prefix(X)
mark(app(X1, X2)) -> aapp(mark(X1), mark(X2))
mark(from(X)) -> afrom(mark(X))
mark(zWadr(X1, X2)) -> azWadr(mark(X1), mark(X2))
mark(prefix(X)) -> aprefix(mark(X))
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(s(X)) -> s(mark(X))
innermost
MARK(zWadr(X1, X2)) -> MARK(X2)
MARK(zWadr(X1, X2)) -> MARK(X1)
azWadr(XS, nil) -> nil
mark(s(X)) -> s(mark(X))
mark(prefix(X)) -> aprefix(mark(X))
azWadr(X1, X2) -> zWadr(X1, X2)
mark(nil) -> nil
aapp(cons(X, XS), YS) -> cons(mark(X), app(XS, YS))
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(from(X)) -> afrom(mark(X))
aapp(nil, YS) -> mark(YS)
mark(zWadr(X1, X2)) -> azWadr(mark(X1), mark(X2))
afrom(X) -> cons(mark(X), from(s(X)))
aapp(X1, X2) -> app(X1, X2)
azWadr(nil, YS) -> nil
afrom(X) -> from(X)
aprefix(X) -> prefix(X)
azWadr(cons(X, XS), cons(Y, YS)) -> cons(aapp(mark(Y), cons(mark(X), nil)), zWadr(XS, YS))
aprefix(L) -> cons(nil, zWadr(L, prefix(L)))
mark(app(X1, X2)) -> aapp(mark(X1), mark(X2))
POL( MARK(x1) ) = x1
POL( zWadr(x1, x2) ) = x1 + x2 + 1
POL( s(x1) ) = x1
POL( app(x1, x2) ) = x1 + x2
POL( AAPP(x1, x2) ) = x2
POL( mark(x1) ) = x1
POL( azWadr(x1, x2) ) = x1 + x2 + 1
POL( nil ) = 0
POL( prefix(x1) ) = 0
POL( aprefix(x1) ) = 0
POL( aapp(x1, x2) ) = x1 + x2
POL( cons(x1, x2) ) = 0
POL( from(x1) ) = 0
POL( afrom(x1) ) = 0
R
↳DPs
→DP Problem 1
↳Neg POLO
→DP Problem 2
↳DGraph
...
→DP Problem 4
↳Negative Polynomial Order
MARK(app(X1, X2)) -> MARK(X2)
MARK(app(X1, X2)) -> MARK(X1)
AAPP(nil, YS) -> MARK(YS)
MARK(app(X1, X2)) -> AAPP(mark(X1), mark(X2))
MARK(s(X)) -> MARK(X)
aapp(nil, YS) -> mark(YS)
aapp(cons(X, XS), YS) -> cons(mark(X), app(XS, YS))
aapp(X1, X2) -> app(X1, X2)
afrom(X) -> cons(mark(X), from(s(X)))
afrom(X) -> from(X)
azWadr(nil, YS) -> nil
azWadr(XS, nil) -> nil
azWadr(cons(X, XS), cons(Y, YS)) -> cons(aapp(mark(Y), cons(mark(X), nil)), zWadr(XS, YS))
azWadr(X1, X2) -> zWadr(X1, X2)
aprefix(L) -> cons(nil, zWadr(L, prefix(L)))
aprefix(X) -> prefix(X)
mark(app(X1, X2)) -> aapp(mark(X1), mark(X2))
mark(from(X)) -> afrom(mark(X))
mark(zWadr(X1, X2)) -> azWadr(mark(X1), mark(X2))
mark(prefix(X)) -> aprefix(mark(X))
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(s(X)) -> s(mark(X))
innermost
MARK(app(X1, X2)) -> MARK(X2)
MARK(app(X1, X2)) -> MARK(X1)
MARK(app(X1, X2)) -> AAPP(mark(X1), mark(X2))
azWadr(XS, nil) -> nil
mark(s(X)) -> s(mark(X))
mark(prefix(X)) -> aprefix(mark(X))
azWadr(X1, X2) -> zWadr(X1, X2)
mark(nil) -> nil
aapp(cons(X, XS), YS) -> cons(mark(X), app(XS, YS))
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(from(X)) -> afrom(mark(X))
aapp(nil, YS) -> mark(YS)
mark(zWadr(X1, X2)) -> azWadr(mark(X1), mark(X2))
afrom(X) -> cons(mark(X), from(s(X)))
aapp(X1, X2) -> app(X1, X2)
azWadr(nil, YS) -> nil
afrom(X) -> from(X)
aprefix(X) -> prefix(X)
azWadr(cons(X, XS), cons(Y, YS)) -> cons(aapp(mark(Y), cons(mark(X), nil)), zWadr(XS, YS))
aprefix(L) -> cons(nil, zWadr(L, prefix(L)))
mark(app(X1, X2)) -> aapp(mark(X1), mark(X2))
POL( MARK(x1) ) = x1
POL( app(x1, x2) ) = x1 + x2 + 1
POL( AAPP(x1, x2) ) = x2
POL( mark(x1) ) = x1
POL( s(x1) ) = x1
POL( azWadr(x1, x2) ) = 0
POL( nil ) = 0
POL( prefix(x1) ) = 0
POL( aprefix(x1) ) = 0
POL( zWadr(x1, x2) ) = 0
POL( aapp(x1, x2) ) = x1 + x2 + 1
POL( cons(x1, x2) ) = 0
POL( from(x1) ) = 0
POL( afrom(x1) ) = 0
R
↳DPs
→DP Problem 1
↳Neg POLO
→DP Problem 2
↳DGraph
...
→DP Problem 5
↳Dependency Graph
AAPP(nil, YS) -> MARK(YS)
MARK(s(X)) -> MARK(X)
aapp(nil, YS) -> mark(YS)
aapp(cons(X, XS), YS) -> cons(mark(X), app(XS, YS))
aapp(X1, X2) -> app(X1, X2)
afrom(X) -> cons(mark(X), from(s(X)))
afrom(X) -> from(X)
azWadr(nil, YS) -> nil
azWadr(XS, nil) -> nil
azWadr(cons(X, XS), cons(Y, YS)) -> cons(aapp(mark(Y), cons(mark(X), nil)), zWadr(XS, YS))
azWadr(X1, X2) -> zWadr(X1, X2)
aprefix(L) -> cons(nil, zWadr(L, prefix(L)))
aprefix(X) -> prefix(X)
mark(app(X1, X2)) -> aapp(mark(X1), mark(X2))
mark(from(X)) -> afrom(mark(X))
mark(zWadr(X1, X2)) -> azWadr(mark(X1), mark(X2))
mark(prefix(X)) -> aprefix(mark(X))
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(s(X)) -> s(mark(X))
innermost
R
↳DPs
→DP Problem 1
↳Neg POLO
→DP Problem 2
↳DGraph
...
→DP Problem 6
↳Usable Rules (Innermost)
MARK(s(X)) -> MARK(X)
aapp(nil, YS) -> mark(YS)
aapp(cons(X, XS), YS) -> cons(mark(X), app(XS, YS))
aapp(X1, X2) -> app(X1, X2)
afrom(X) -> cons(mark(X), from(s(X)))
afrom(X) -> from(X)
azWadr(nil, YS) -> nil
azWadr(XS, nil) -> nil
azWadr(cons(X, XS), cons(Y, YS)) -> cons(aapp(mark(Y), cons(mark(X), nil)), zWadr(XS, YS))
azWadr(X1, X2) -> zWadr(X1, X2)
aprefix(L) -> cons(nil, zWadr(L, prefix(L)))
aprefix(X) -> prefix(X)
mark(app(X1, X2)) -> aapp(mark(X1), mark(X2))
mark(from(X)) -> afrom(mark(X))
mark(zWadr(X1, X2)) -> azWadr(mark(X1), mark(X2))
mark(prefix(X)) -> aprefix(mark(X))
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(s(X)) -> s(mark(X))
innermost
R
↳DPs
→DP Problem 1
↳Neg POLO
→DP Problem 2
↳DGraph
...
→DP Problem 7
↳Size-Change Principle
MARK(s(X)) -> MARK(X)
none
innermost
|
|
trivial
s(x1) -> s(x1)