R
↳Dependency Pair Analysis
AAPP(nil, YS) -> MARK(YS)
AAPP(cons(X, XS), YS) -> MARK(X)
AFROM(X) -> MARK(X)
AZWADR(cons(X, XS), cons(Y, YS)) -> AAPP(mark(Y), cons(mark(X), nil))
AZWADR(cons(X, XS), cons(Y, YS)) -> MARK(Y)
AZWADR(cons(X, XS), cons(Y, YS)) -> MARK(X)
MARK(app(X1, X2)) -> AAPP(mark(X1), mark(X2))
MARK(app(X1, X2)) -> MARK(X1)
MARK(app(X1, X2)) -> MARK(X2)
MARK(from(X)) -> AFROM(mark(X))
MARK(from(X)) -> MARK(X)
MARK(zWadr(X1, X2)) -> AZWADR(mark(X1), mark(X2))
MARK(zWadr(X1, X2)) -> MARK(X1)
MARK(zWadr(X1, X2)) -> MARK(X2)
MARK(prefix(X)) -> APREFIX(mark(X))
MARK(prefix(X)) -> MARK(X)
MARK(cons(X1, X2)) -> MARK(X1)
MARK(s(X)) -> MARK(X)
R
↳DPs
→DP Problem 1
↳Remaining Obligation(s)
AZWADR(cons(X, XS), cons(Y, YS)) -> MARK(X)
MARK(s(X)) -> MARK(X)
MARK(cons(X1, X2)) -> MARK(X1)
MARK(prefix(X)) -> MARK(X)
MARK(zWadr(X1, X2)) -> MARK(X2)
MARK(zWadr(X1, X2)) -> MARK(X1)
AZWADR(cons(X, XS), cons(Y, YS)) -> MARK(Y)
AZWADR(cons(X, XS), cons(Y, YS)) -> AAPP(mark(Y), cons(mark(X), nil))
MARK(zWadr(X1, X2)) -> AZWADR(mark(X1), mark(X2))
MARK(from(X)) -> MARK(X)
AFROM(X) -> MARK(X)
MARK(from(X)) -> AFROM(mark(X))
MARK(app(X1, X2)) -> MARK(X2)
MARK(app(X1, X2)) -> MARK(X1)
AAPP(cons(X, XS), YS) -> MARK(X)
MARK(app(X1, X2)) -> AAPP(mark(X1), mark(X2))
AAPP(nil, YS) -> MARK(YS)
aapp(nil, YS) -> mark(YS)
aapp(cons(X, XS), YS) -> cons(mark(X), app(XS, YS))
aapp(X1, X2) -> app(X1, X2)
afrom(X) -> cons(mark(X), from(s(X)))
afrom(X) -> from(X)
azWadr(nil, YS) -> nil
azWadr(XS, nil) -> nil
azWadr(cons(X, XS), cons(Y, YS)) -> cons(aapp(mark(Y), cons(mark(X), nil)), zWadr(XS, YS))
azWadr(X1, X2) -> zWadr(X1, X2)
aprefix(L) -> cons(nil, zWadr(L, prefix(L)))
aprefix(X) -> prefix(X)
mark(app(X1, X2)) -> aapp(mark(X1), mark(X2))
mark(from(X)) -> afrom(mark(X))
mark(zWadr(X1, X2)) -> azWadr(mark(X1), mark(X2))
mark(prefix(X)) -> aprefix(mark(X))
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(s(X)) -> s(mark(X))
innermost