R
↳Dependency Pair Analysis
ACTIVE(dbl(s(X))) -> S(s(dbl(X)))
ACTIVE(dbl(s(X))) -> S(dbl(X))
ACTIVE(dbl(s(X))) -> DBL(X)
ACTIVE(dbls(cons(X, Y))) -> CONS(dbl(X), dbls(Y))
ACTIVE(dbls(cons(X, Y))) -> DBL(X)
ACTIVE(dbls(cons(X, Y))) -> DBLS(Y)
ACTIVE(sel(s(X), cons(Y, Z))) -> SEL(X, Z)
ACTIVE(indx(cons(X, Y), Z)) -> CONS(sel(X, Z), indx(Y, Z))
ACTIVE(indx(cons(X, Y), Z)) -> SEL(X, Z)
ACTIVE(indx(cons(X, Y), Z)) -> INDX(Y, Z)
ACTIVE(from(X)) -> CONS(X, from(s(X)))
ACTIVE(from(X)) -> FROM(s(X))
ACTIVE(from(X)) -> S(X)
ACTIVE(dbl(X)) -> DBL(active(X))
ACTIVE(dbl(X)) -> ACTIVE(X)
ACTIVE(dbls(X)) -> DBLS(active(X))
ACTIVE(dbls(X)) -> ACTIVE(X)
ACTIVE(sel(X1, X2)) -> SEL(active(X1), X2)
ACTIVE(sel(X1, X2)) -> ACTIVE(X1)
ACTIVE(sel(X1, X2)) -> SEL(X1, active(X2))
ACTIVE(sel(X1, X2)) -> ACTIVE(X2)
ACTIVE(indx(X1, X2)) -> INDX(active(X1), X2)
ACTIVE(indx(X1, X2)) -> ACTIVE(X1)
DBL(mark(X)) -> DBL(X)
DBL(ok(X)) -> DBL(X)
DBLS(mark(X)) -> DBLS(X)
DBLS(ok(X)) -> DBLS(X)
SEL(mark(X1), X2) -> SEL(X1, X2)
SEL(X1, mark(X2)) -> SEL(X1, X2)
SEL(ok(X1), ok(X2)) -> SEL(X1, X2)
INDX(mark(X1), X2) -> INDX(X1, X2)
INDX(ok(X1), ok(X2)) -> INDX(X1, X2)
PROPER(dbl(X)) -> DBL(proper(X))
PROPER(dbl(X)) -> PROPER(X)
PROPER(s(X)) -> S(proper(X))
PROPER(s(X)) -> PROPER(X)
PROPER(dbls(X)) -> DBLS(proper(X))
PROPER(dbls(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(sel(X1, X2)) -> SEL(proper(X1), proper(X2))
PROPER(sel(X1, X2)) -> PROPER(X1)
PROPER(sel(X1, X2)) -> PROPER(X2)
PROPER(indx(X1, X2)) -> INDX(proper(X1), proper(X2))
PROPER(indx(X1, X2)) -> PROPER(X1)
PROPER(indx(X1, X2)) -> PROPER(X2)
PROPER(from(X)) -> FROM(proper(X))
PROPER(from(X)) -> PROPER(X)
S(ok(X)) -> S(X)
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
FROM(ok(X)) -> FROM(X)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
→DP Problem 8
↳AFS
→DP Problem 9
↳AFS
→DP Problem 10
↳Remaining
S(ok(X)) -> S(X)
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(dbls(nil)) -> mark(nil)
active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(indx(nil, X)) -> mark(nil)
active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(dbl(X)) -> dbl(active(X))
active(dbls(X)) -> dbls(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(indx(X1, X2)) -> indx(active(X1), X2)
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
dbls(mark(X)) -> mark(dbls(X))
dbls(ok(X)) -> ok(dbls(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
indx(mark(X1), X2) -> mark(indx(X1, X2))
indx(ok(X1), ok(X2)) -> ok(indx(X1, X2))
proper(dbl(X)) -> dbl(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(dbls(X)) -> dbls(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(indx(X1, X2)) -> indx(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
S(ok(X)) -> S(X)
S(x1) -> S(x1)
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 11
↳Dependency Graph
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
→DP Problem 8
↳AFS
→DP Problem 9
↳AFS
→DP Problem 10
↳Remaining
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(dbls(nil)) -> mark(nil)
active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(indx(nil, X)) -> mark(nil)
active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(dbl(X)) -> dbl(active(X))
active(dbls(X)) -> dbls(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(indx(X1, X2)) -> indx(active(X1), X2)
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
dbls(mark(X)) -> mark(dbls(X))
dbls(ok(X)) -> ok(dbls(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
indx(mark(X1), X2) -> mark(indx(X1, X2))
indx(ok(X1), ok(X2)) -> ok(indx(X1, X2))
proper(dbl(X)) -> dbl(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(dbls(X)) -> dbls(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(indx(X1, X2)) -> indx(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
→DP Problem 8
↳AFS
→DP Problem 9
↳AFS
→DP Problem 10
↳Remaining
DBL(ok(X)) -> DBL(X)
DBL(mark(X)) -> DBL(X)
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(dbls(nil)) -> mark(nil)
active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(indx(nil, X)) -> mark(nil)
active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(dbl(X)) -> dbl(active(X))
active(dbls(X)) -> dbls(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(indx(X1, X2)) -> indx(active(X1), X2)
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
dbls(mark(X)) -> mark(dbls(X))
dbls(ok(X)) -> ok(dbls(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
indx(mark(X1), X2) -> mark(indx(X1, X2))
indx(ok(X1), ok(X2)) -> ok(indx(X1, X2))
proper(dbl(X)) -> dbl(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(dbls(X)) -> dbls(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(indx(X1, X2)) -> indx(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
DBL(ok(X)) -> DBL(X)
DBL(mark(X)) -> DBL(X)
DBL(x1) -> DBL(x1)
ok(x1) -> ok(x1)
mark(x1) -> mark(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 12
↳Dependency Graph
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
→DP Problem 8
↳AFS
→DP Problem 9
↳AFS
→DP Problem 10
↳Remaining
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(dbls(nil)) -> mark(nil)
active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(indx(nil, X)) -> mark(nil)
active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(dbl(X)) -> dbl(active(X))
active(dbls(X)) -> dbls(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(indx(X1, X2)) -> indx(active(X1), X2)
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
dbls(mark(X)) -> mark(dbls(X))
dbls(ok(X)) -> ok(dbls(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
indx(mark(X1), X2) -> mark(indx(X1, X2))
indx(ok(X1), ok(X2)) -> ok(indx(X1, X2))
proper(dbl(X)) -> dbl(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(dbls(X)) -> dbls(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(indx(X1, X2)) -> indx(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Argument Filtering and Ordering
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
→DP Problem 8
↳AFS
→DP Problem 9
↳AFS
→DP Problem 10
↳Remaining
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(dbls(nil)) -> mark(nil)
active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(indx(nil, X)) -> mark(nil)
active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(dbl(X)) -> dbl(active(X))
active(dbls(X)) -> dbls(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(indx(X1, X2)) -> indx(active(X1), X2)
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
dbls(mark(X)) -> mark(dbls(X))
dbls(ok(X)) -> ok(dbls(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
indx(mark(X1), X2) -> mark(indx(X1, X2))
indx(ok(X1), ok(X2)) -> ok(indx(X1, X2))
proper(dbl(X)) -> dbl(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(dbls(X)) -> dbls(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(indx(X1, X2)) -> indx(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
CONS(x1, x2) -> CONS(x1, x2)
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 13
↳Dependency Graph
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
→DP Problem 8
↳AFS
→DP Problem 9
↳AFS
→DP Problem 10
↳Remaining
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(dbls(nil)) -> mark(nil)
active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(indx(nil, X)) -> mark(nil)
active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(dbl(X)) -> dbl(active(X))
active(dbls(X)) -> dbls(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(indx(X1, X2)) -> indx(active(X1), X2)
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
dbls(mark(X)) -> mark(dbls(X))
dbls(ok(X)) -> ok(dbls(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
indx(mark(X1), X2) -> mark(indx(X1, X2))
indx(ok(X1), ok(X2)) -> ok(indx(X1, X2))
proper(dbl(X)) -> dbl(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(dbls(X)) -> dbls(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(indx(X1, X2)) -> indx(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Argument Filtering and Ordering
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
→DP Problem 8
↳AFS
→DP Problem 9
↳AFS
→DP Problem 10
↳Remaining
DBLS(ok(X)) -> DBLS(X)
DBLS(mark(X)) -> DBLS(X)
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(dbls(nil)) -> mark(nil)
active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(indx(nil, X)) -> mark(nil)
active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(dbl(X)) -> dbl(active(X))
active(dbls(X)) -> dbls(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(indx(X1, X2)) -> indx(active(X1), X2)
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
dbls(mark(X)) -> mark(dbls(X))
dbls(ok(X)) -> ok(dbls(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
indx(mark(X1), X2) -> mark(indx(X1, X2))
indx(ok(X1), ok(X2)) -> ok(indx(X1, X2))
proper(dbl(X)) -> dbl(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(dbls(X)) -> dbls(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(indx(X1, X2)) -> indx(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
DBLS(ok(X)) -> DBLS(X)
DBLS(mark(X)) -> DBLS(X)
DBLS(x1) -> DBLS(x1)
ok(x1) -> ok(x1)
mark(x1) -> mark(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 14
↳Dependency Graph
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
→DP Problem 8
↳AFS
→DP Problem 9
↳AFS
→DP Problem 10
↳Remaining
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(dbls(nil)) -> mark(nil)
active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(indx(nil, X)) -> mark(nil)
active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(dbl(X)) -> dbl(active(X))
active(dbls(X)) -> dbls(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(indx(X1, X2)) -> indx(active(X1), X2)
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
dbls(mark(X)) -> mark(dbls(X))
dbls(ok(X)) -> ok(dbls(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
indx(mark(X1), X2) -> mark(indx(X1, X2))
indx(ok(X1), ok(X2)) -> ok(indx(X1, X2))
proper(dbl(X)) -> dbl(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(dbls(X)) -> dbls(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(indx(X1, X2)) -> indx(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳Argument Filtering and Ordering
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
→DP Problem 8
↳AFS
→DP Problem 9
↳AFS
→DP Problem 10
↳Remaining
SEL(ok(X1), ok(X2)) -> SEL(X1, X2)
SEL(X1, mark(X2)) -> SEL(X1, X2)
SEL(mark(X1), X2) -> SEL(X1, X2)
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(dbls(nil)) -> mark(nil)
active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(indx(nil, X)) -> mark(nil)
active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(dbl(X)) -> dbl(active(X))
active(dbls(X)) -> dbls(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(indx(X1, X2)) -> indx(active(X1), X2)
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
dbls(mark(X)) -> mark(dbls(X))
dbls(ok(X)) -> ok(dbls(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
indx(mark(X1), X2) -> mark(indx(X1, X2))
indx(ok(X1), ok(X2)) -> ok(indx(X1, X2))
proper(dbl(X)) -> dbl(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(dbls(X)) -> dbls(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(indx(X1, X2)) -> indx(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
SEL(ok(X1), ok(X2)) -> SEL(X1, X2)
SEL(X1, mark(X2)) -> SEL(X1, X2)
SEL(mark(X1), X2) -> SEL(X1, X2)
SEL(x1, x2) -> SEL(x1, x2)
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 15
↳Dependency Graph
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
→DP Problem 8
↳AFS
→DP Problem 9
↳AFS
→DP Problem 10
↳Remaining
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(dbls(nil)) -> mark(nil)
active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(indx(nil, X)) -> mark(nil)
active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(dbl(X)) -> dbl(active(X))
active(dbls(X)) -> dbls(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(indx(X1, X2)) -> indx(active(X1), X2)
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
dbls(mark(X)) -> mark(dbls(X))
dbls(ok(X)) -> ok(dbls(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
indx(mark(X1), X2) -> mark(indx(X1, X2))
indx(ok(X1), ok(X2)) -> ok(indx(X1, X2))
proper(dbl(X)) -> dbl(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(dbls(X)) -> dbls(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(indx(X1, X2)) -> indx(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳Argument Filtering and Ordering
→DP Problem 7
↳AFS
→DP Problem 8
↳AFS
→DP Problem 9
↳AFS
→DP Problem 10
↳Remaining
INDX(ok(X1), ok(X2)) -> INDX(X1, X2)
INDX(mark(X1), X2) -> INDX(X1, X2)
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(dbls(nil)) -> mark(nil)
active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(indx(nil, X)) -> mark(nil)
active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(dbl(X)) -> dbl(active(X))
active(dbls(X)) -> dbls(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(indx(X1, X2)) -> indx(active(X1), X2)
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
dbls(mark(X)) -> mark(dbls(X))
dbls(ok(X)) -> ok(dbls(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
indx(mark(X1), X2) -> mark(indx(X1, X2))
indx(ok(X1), ok(X2)) -> ok(indx(X1, X2))
proper(dbl(X)) -> dbl(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(dbls(X)) -> dbls(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(indx(X1, X2)) -> indx(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
INDX(ok(X1), ok(X2)) -> INDX(X1, X2)
INDX(mark(X1), X2) -> INDX(X1, X2)
INDX(x1, x2) -> INDX(x1, x2)
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 16
↳Dependency Graph
→DP Problem 7
↳AFS
→DP Problem 8
↳AFS
→DP Problem 9
↳AFS
→DP Problem 10
↳Remaining
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(dbls(nil)) -> mark(nil)
active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(indx(nil, X)) -> mark(nil)
active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(dbl(X)) -> dbl(active(X))
active(dbls(X)) -> dbls(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(indx(X1, X2)) -> indx(active(X1), X2)
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
dbls(mark(X)) -> mark(dbls(X))
dbls(ok(X)) -> ok(dbls(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
indx(mark(X1), X2) -> mark(indx(X1, X2))
indx(ok(X1), ok(X2)) -> ok(indx(X1, X2))
proper(dbl(X)) -> dbl(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(dbls(X)) -> dbls(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(indx(X1, X2)) -> indx(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳Argument Filtering and Ordering
→DP Problem 8
↳AFS
→DP Problem 9
↳AFS
→DP Problem 10
↳Remaining
FROM(ok(X)) -> FROM(X)
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(dbls(nil)) -> mark(nil)
active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(indx(nil, X)) -> mark(nil)
active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(dbl(X)) -> dbl(active(X))
active(dbls(X)) -> dbls(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(indx(X1, X2)) -> indx(active(X1), X2)
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
dbls(mark(X)) -> mark(dbls(X))
dbls(ok(X)) -> ok(dbls(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
indx(mark(X1), X2) -> mark(indx(X1, X2))
indx(ok(X1), ok(X2)) -> ok(indx(X1, X2))
proper(dbl(X)) -> dbl(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(dbls(X)) -> dbls(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(indx(X1, X2)) -> indx(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
FROM(ok(X)) -> FROM(X)
FROM(x1) -> FROM(x1)
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
→DP Problem 17
↳Dependency Graph
→DP Problem 8
↳AFS
→DP Problem 9
↳AFS
→DP Problem 10
↳Remaining
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(dbls(nil)) -> mark(nil)
active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(indx(nil, X)) -> mark(nil)
active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(dbl(X)) -> dbl(active(X))
active(dbls(X)) -> dbls(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(indx(X1, X2)) -> indx(active(X1), X2)
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
dbls(mark(X)) -> mark(dbls(X))
dbls(ok(X)) -> ok(dbls(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
indx(mark(X1), X2) -> mark(indx(X1, X2))
indx(ok(X1), ok(X2)) -> ok(indx(X1, X2))
proper(dbl(X)) -> dbl(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(dbls(X)) -> dbls(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(indx(X1, X2)) -> indx(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
→DP Problem 8
↳Argument Filtering and Ordering
→DP Problem 9
↳AFS
→DP Problem 10
↳Remaining
ACTIVE(indx(X1, X2)) -> ACTIVE(X1)
ACTIVE(sel(X1, X2)) -> ACTIVE(X2)
ACTIVE(sel(X1, X2)) -> ACTIVE(X1)
ACTIVE(dbls(X)) -> ACTIVE(X)
ACTIVE(dbl(X)) -> ACTIVE(X)
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(dbls(nil)) -> mark(nil)
active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(indx(nil, X)) -> mark(nil)
active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(dbl(X)) -> dbl(active(X))
active(dbls(X)) -> dbls(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(indx(X1, X2)) -> indx(active(X1), X2)
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
dbls(mark(X)) -> mark(dbls(X))
dbls(ok(X)) -> ok(dbls(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
indx(mark(X1), X2) -> mark(indx(X1, X2))
indx(ok(X1), ok(X2)) -> ok(indx(X1, X2))
proper(dbl(X)) -> dbl(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(dbls(X)) -> dbls(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(indx(X1, X2)) -> indx(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
ACTIVE(indx(X1, X2)) -> ACTIVE(X1)
ACTIVE(sel(X1, X2)) -> ACTIVE(X2)
ACTIVE(sel(X1, X2)) -> ACTIVE(X1)
ACTIVE(dbls(X)) -> ACTIVE(X)
ACTIVE(dbl(X)) -> ACTIVE(X)
ACTIVE(x1) -> ACTIVE(x1)
sel(x1, x2) -> sel(x1, x2)
indx(x1, x2) -> indx(x1, x2)
dbl(x1) -> dbl(x1)
dbls(x1) -> dbls(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
→DP Problem 8
↳AFS
→DP Problem 18
↳Dependency Graph
→DP Problem 9
↳AFS
→DP Problem 10
↳Remaining
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(dbls(nil)) -> mark(nil)
active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(indx(nil, X)) -> mark(nil)
active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(dbl(X)) -> dbl(active(X))
active(dbls(X)) -> dbls(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(indx(X1, X2)) -> indx(active(X1), X2)
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
dbls(mark(X)) -> mark(dbls(X))
dbls(ok(X)) -> ok(dbls(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
indx(mark(X1), X2) -> mark(indx(X1, X2))
indx(ok(X1), ok(X2)) -> ok(indx(X1, X2))
proper(dbl(X)) -> dbl(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(dbls(X)) -> dbls(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(indx(X1, X2)) -> indx(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
→DP Problem 8
↳AFS
→DP Problem 9
↳Argument Filtering and Ordering
→DP Problem 10
↳Remaining
PROPER(from(X)) -> PROPER(X)
PROPER(indx(X1, X2)) -> PROPER(X2)
PROPER(indx(X1, X2)) -> PROPER(X1)
PROPER(sel(X1, X2)) -> PROPER(X2)
PROPER(sel(X1, X2)) -> PROPER(X1)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(dbls(X)) -> PROPER(X)
PROPER(s(X)) -> PROPER(X)
PROPER(dbl(X)) -> PROPER(X)
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(dbls(nil)) -> mark(nil)
active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(indx(nil, X)) -> mark(nil)
active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(dbl(X)) -> dbl(active(X))
active(dbls(X)) -> dbls(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(indx(X1, X2)) -> indx(active(X1), X2)
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
dbls(mark(X)) -> mark(dbls(X))
dbls(ok(X)) -> ok(dbls(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
indx(mark(X1), X2) -> mark(indx(X1, X2))
indx(ok(X1), ok(X2)) -> ok(indx(X1, X2))
proper(dbl(X)) -> dbl(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(dbls(X)) -> dbls(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(indx(X1, X2)) -> indx(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
PROPER(from(X)) -> PROPER(X)
PROPER(indx(X1, X2)) -> PROPER(X2)
PROPER(indx(X1, X2)) -> PROPER(X1)
PROPER(sel(X1, X2)) -> PROPER(X2)
PROPER(sel(X1, X2)) -> PROPER(X1)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(dbls(X)) -> PROPER(X)
PROPER(s(X)) -> PROPER(X)
PROPER(dbl(X)) -> PROPER(X)
PROPER(x1) -> PROPER(x1)
sel(x1, x2) -> sel(x1, x2)
indx(x1, x2) -> indx(x1, x2)
cons(x1, x2) -> cons(x1, x2)
dbls(x1) -> dbls(x1)
from(x1) -> from(x1)
s(x1) -> s(x1)
dbl(x1) -> dbl(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
→DP Problem 8
↳AFS
→DP Problem 9
↳AFS
→DP Problem 19
↳Dependency Graph
→DP Problem 10
↳Remaining
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(dbls(nil)) -> mark(nil)
active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(indx(nil, X)) -> mark(nil)
active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(dbl(X)) -> dbl(active(X))
active(dbls(X)) -> dbls(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(indx(X1, X2)) -> indx(active(X1), X2)
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
dbls(mark(X)) -> mark(dbls(X))
dbls(ok(X)) -> ok(dbls(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
indx(mark(X1), X2) -> mark(indx(X1, X2))
indx(ok(X1), ok(X2)) -> ok(indx(X1, X2))
proper(dbl(X)) -> dbl(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(dbls(X)) -> dbls(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(indx(X1, X2)) -> indx(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 5
↳AFS
→DP Problem 6
↳AFS
→DP Problem 7
↳AFS
→DP Problem 8
↳AFS
→DP Problem 9
↳AFS
→DP Problem 10
↳Remaining Obligation(s)
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(dbls(nil)) -> mark(nil)
active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(indx(nil, X)) -> mark(nil)
active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(dbl(X)) -> dbl(active(X))
active(dbls(X)) -> dbls(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(indx(X1, X2)) -> indx(active(X1), X2)
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
dbls(mark(X)) -> mark(dbls(X))
dbls(ok(X)) -> ok(dbls(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
indx(mark(X1), X2) -> mark(indx(X1, X2))
indx(ok(X1), ok(X2)) -> ok(indx(X1, X2))
proper(dbl(X)) -> dbl(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(dbls(X)) -> dbls(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(indx(X1, X2)) -> indx(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost