Term Rewriting System R:
[X, Y, Z]
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(X) -> X

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))
SEL(s(X), cons(Y, Z)) -> ACTIVATE(Z)
ACTIVATE(nfrom(X)) -> FROM(X)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Polynomial Ordering


Dependency Pair:

SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(X) -> X


Strategy:

innermost




The following dependency pair can be strictly oriented:

SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))


There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(n__from(x1))=  0  
  POL(from(x1))=  0  
  POL(activate(x1))=  0  
  POL(cons(x1, x2))=  0  
  POL(SEL(x1, x2))=  x1  
  POL(s(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 2
Dependency Graph


Dependency Pair:


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(X) -> X


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes