R
↳Dependency Pair Analysis
SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))
SEL(s(X), cons(Y, Z)) -> ACTIVATE(Z)
ACTIVATE(nfrom(X)) -> FROM(X)
R
↳DPs
→DP Problem 1
↳Narrowing Transformation
SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(X) -> X
innermost
two new Dependency Pairs are created:
SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))
SEL(s(X), cons(Y, nfrom(X''))) -> SEL(X, from(X''))
SEL(s(X), cons(Y, Z')) -> SEL(X, Z')
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Narrowing Transformation
SEL(s(X), cons(Y, Z')) -> SEL(X, Z')
SEL(s(X), cons(Y, nfrom(X''))) -> SEL(X, from(X''))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(X) -> X
innermost
two new Dependency Pairs are created:
SEL(s(X), cons(Y, nfrom(X''))) -> SEL(X, from(X''))
SEL(s(X), cons(Y, nfrom(X'''))) -> SEL(X, cons(X''', nfrom(s(X'''))))
SEL(s(X), cons(Y, nfrom(X'''))) -> SEL(X, nfrom(X'''))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 3
↳Forward Instantiation Transformation
SEL(s(X), cons(Y, nfrom(X'''))) -> SEL(X, cons(X''', nfrom(s(X'''))))
SEL(s(X), cons(Y, Z')) -> SEL(X, Z')
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(X) -> X
innermost
two new Dependency Pairs are created:
SEL(s(X), cons(Y, Z')) -> SEL(X, Z')
SEL(s(s(X'')), cons(Y, cons(Y'', Z'''))) -> SEL(s(X''), cons(Y'', Z'''))
SEL(s(s(X'')), cons(Y, cons(Y'', nfrom(X''''')))) -> SEL(s(X''), cons(Y'', nfrom(X''''')))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 4
↳Polynomial Ordering
SEL(s(X), cons(Y, nfrom(X'''))) -> SEL(X, cons(X''', nfrom(s(X'''))))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(X) -> X
innermost
SEL(s(X), cons(Y, nfrom(X'''))) -> SEL(X, cons(X''', nfrom(s(X'''))))
POL(n__from(x1)) = 0 POL(SEL(x1, x2)) = x1 POL(cons(x1, x2)) = 0 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 6
↳Dependency Graph
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(X) -> X
innermost
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 5
↳Polynomial Ordering
SEL(s(s(X'')), cons(Y, cons(Y'', Z'''))) -> SEL(s(X''), cons(Y'', Z'''))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
sel(0, cons(X, Y)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(X) -> X
innermost
SEL(s(s(X'')), cons(Y, cons(Y'', Z'''))) -> SEL(s(X''), cons(Y'', Z'''))
POL(SEL(x1, x2)) = x1 POL(cons(x1, x2)) = 0 POL(s(x1)) = 1 + x1