R
↳Dependency Pair Analysis
AFROM(X) -> MARK(X)
ASEL(0, cons(X, Y)) -> MARK(X)
ASEL(s(X), cons(Y, Z)) -> ASEL(mark(X), mark(Z))
ASEL(s(X), cons(Y, Z)) -> MARK(X)
ASEL(s(X), cons(Y, Z)) -> MARK(Z)
MARK(from(X)) -> AFROM(mark(X))
MARK(from(X)) -> MARK(X)
MARK(sel(X1, X2)) -> ASEL(mark(X1), mark(X2))
MARK(sel(X1, X2)) -> MARK(X1)
MARK(sel(X1, X2)) -> MARK(X2)
MARK(cons(X1, X2)) -> MARK(X1)
MARK(s(X)) -> MARK(X)
R
↳DPs
→DP Problem 1
↳Narrowing Transformation
ASEL(s(X), cons(Y, Z)) -> MARK(Z)
ASEL(s(X), cons(Y, Z)) -> MARK(X)
ASEL(s(X), cons(Y, Z)) -> ASEL(mark(X), mark(Z))
MARK(s(X)) -> MARK(X)
MARK(cons(X1, X2)) -> MARK(X1)
MARK(sel(X1, X2)) -> MARK(X2)
MARK(sel(X1, X2)) -> MARK(X1)
ASEL(0, cons(X, Y)) -> MARK(X)
MARK(sel(X1, X2)) -> ASEL(mark(X1), mark(X2))
MARK(from(X)) -> MARK(X)
MARK(from(X)) -> AFROM(mark(X))
AFROM(X) -> MARK(X)
afrom(X) -> cons(mark(X), from(s(X)))
afrom(X) -> from(X)
asel(0, cons(X, Y)) -> mark(X)
asel(s(X), cons(Y, Z)) -> asel(mark(X), mark(Z))
asel(X1, X2) -> sel(X1, X2)
mark(from(X)) -> afrom(mark(X))
mark(sel(X1, X2)) -> asel(mark(X1), mark(X2))
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(s(X)) -> s(mark(X))
mark(0) -> 0
innermost
10 new Dependency Pairs are created:
ASEL(s(X), cons(Y, Z)) -> ASEL(mark(X), mark(Z))
ASEL(s(from(X'')), cons(Y, Z)) -> ASEL(afrom(mark(X'')), mark(Z))
ASEL(s(sel(X1', X2')), cons(Y, Z)) -> ASEL(asel(mark(X1'), mark(X2')), mark(Z))
ASEL(s(cons(X1', X2')), cons(Y, Z)) -> ASEL(cons(mark(X1'), X2'), mark(Z))
ASEL(s(s(X'')), cons(Y, Z)) -> ASEL(s(mark(X'')), mark(Z))
ASEL(s(0), cons(Y, Z)) -> ASEL(0, mark(Z))
ASEL(s(X), cons(Y, from(X''))) -> ASEL(mark(X), afrom(mark(X'')))
ASEL(s(X), cons(Y, sel(X1', X2'))) -> ASEL(mark(X), asel(mark(X1'), mark(X2')))
ASEL(s(X), cons(Y, cons(X1', X2'))) -> ASEL(mark(X), cons(mark(X1'), X2'))
ASEL(s(X), cons(Y, s(X''))) -> ASEL(mark(X), s(mark(X'')))
ASEL(s(X), cons(Y, 0)) -> ASEL(mark(X), 0)
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Narrowing Transformation
ASEL(s(X), cons(Y, cons(X1', X2'))) -> ASEL(mark(X), cons(mark(X1'), X2'))
ASEL(s(X), cons(Y, sel(X1', X2'))) -> ASEL(mark(X), asel(mark(X1'), mark(X2')))
ASEL(s(X), cons(Y, from(X''))) -> ASEL(mark(X), afrom(mark(X'')))
ASEL(s(0), cons(Y, Z)) -> ASEL(0, mark(Z))
ASEL(s(s(X'')), cons(Y, Z)) -> ASEL(s(mark(X'')), mark(Z))
ASEL(s(sel(X1', X2')), cons(Y, Z)) -> ASEL(asel(mark(X1'), mark(X2')), mark(Z))
ASEL(s(from(X'')), cons(Y, Z)) -> ASEL(afrom(mark(X'')), mark(Z))
ASEL(s(X), cons(Y, Z)) -> MARK(X)
MARK(s(X)) -> MARK(X)
MARK(cons(X1, X2)) -> MARK(X1)
MARK(sel(X1, X2)) -> MARK(X2)
MARK(sel(X1, X2)) -> MARK(X1)
ASEL(0, cons(X, Y)) -> MARK(X)
MARK(sel(X1, X2)) -> ASEL(mark(X1), mark(X2))
MARK(from(X)) -> MARK(X)
AFROM(X) -> MARK(X)
MARK(from(X)) -> AFROM(mark(X))
ASEL(s(X), cons(Y, Z)) -> MARK(Z)
afrom(X) -> cons(mark(X), from(s(X)))
afrom(X) -> from(X)
asel(0, cons(X, Y)) -> mark(X)
asel(s(X), cons(Y, Z)) -> asel(mark(X), mark(Z))
asel(X1, X2) -> sel(X1, X2)
mark(from(X)) -> afrom(mark(X))
mark(sel(X1, X2)) -> asel(mark(X1), mark(X2))
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(s(X)) -> s(mark(X))
mark(0) -> 0
innermost
10 new Dependency Pairs are created:
MARK(sel(X1, X2)) -> ASEL(mark(X1), mark(X2))
MARK(sel(from(X'), X2)) -> ASEL(afrom(mark(X')), mark(X2))
MARK(sel(sel(X1'', X2''), X2)) -> ASEL(asel(mark(X1''), mark(X2'')), mark(X2))
MARK(sel(cons(X1'', X2''), X2)) -> ASEL(cons(mark(X1''), X2''), mark(X2))
MARK(sel(s(X'), X2)) -> ASEL(s(mark(X')), mark(X2))
MARK(sel(0, X2)) -> ASEL(0, mark(X2))
MARK(sel(X1, from(X'))) -> ASEL(mark(X1), afrom(mark(X')))
MARK(sel(X1, sel(X1'', X2''))) -> ASEL(mark(X1), asel(mark(X1''), mark(X2'')))
MARK(sel(X1, cons(X1'', X2''))) -> ASEL(mark(X1), cons(mark(X1''), X2''))
MARK(sel(X1, s(X'))) -> ASEL(mark(X1), s(mark(X')))
MARK(sel(X1, 0)) -> ASEL(mark(X1), 0)
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 3
↳Polynomial Ordering
MARK(sel(X1, cons(X1'', X2''))) -> ASEL(mark(X1), cons(mark(X1''), X2''))
MARK(sel(X1, sel(X1'', X2''))) -> ASEL(mark(X1), asel(mark(X1''), mark(X2'')))
MARK(sel(X1, from(X'))) -> ASEL(mark(X1), afrom(mark(X')))
MARK(sel(0, X2)) -> ASEL(0, mark(X2))
ASEL(s(X), cons(Y, sel(X1', X2'))) -> ASEL(mark(X), asel(mark(X1'), mark(X2')))
ASEL(s(X), cons(Y, from(X''))) -> ASEL(mark(X), afrom(mark(X'')))
ASEL(s(0), cons(Y, Z)) -> ASEL(0, mark(Z))
ASEL(s(s(X'')), cons(Y, Z)) -> ASEL(s(mark(X'')), mark(Z))
ASEL(s(sel(X1', X2')), cons(Y, Z)) -> ASEL(asel(mark(X1'), mark(X2')), mark(Z))
ASEL(s(from(X'')), cons(Y, Z)) -> ASEL(afrom(mark(X'')), mark(Z))
MARK(sel(s(X'), X2)) -> ASEL(s(mark(X')), mark(X2))
ASEL(s(X), cons(Y, Z)) -> MARK(Z)
MARK(sel(sel(X1'', X2''), X2)) -> ASEL(asel(mark(X1''), mark(X2'')), mark(X2))
ASEL(s(X), cons(Y, Z)) -> MARK(X)
MARK(sel(from(X'), X2)) -> ASEL(afrom(mark(X')), mark(X2))
MARK(s(X)) -> MARK(X)
MARK(cons(X1, X2)) -> MARK(X1)
MARK(sel(X1, X2)) -> MARK(X2)
MARK(sel(X1, X2)) -> MARK(X1)
MARK(from(X)) -> MARK(X)
AFROM(X) -> MARK(X)
MARK(from(X)) -> AFROM(mark(X))
ASEL(0, cons(X, Y)) -> MARK(X)
ASEL(s(X), cons(Y, cons(X1', X2'))) -> ASEL(mark(X), cons(mark(X1'), X2'))
afrom(X) -> cons(mark(X), from(s(X)))
afrom(X) -> from(X)
asel(0, cons(X, Y)) -> mark(X)
asel(s(X), cons(Y, Z)) -> asel(mark(X), mark(Z))
asel(X1, X2) -> sel(X1, X2)
mark(from(X)) -> afrom(mark(X))
mark(sel(X1, X2)) -> asel(mark(X1), mark(X2))
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(s(X)) -> s(mark(X))
mark(0) -> 0
innermost
ASEL(s(from(X'')), cons(Y, Z)) -> ASEL(afrom(mark(X'')), mark(Z))
MARK(sel(from(X'), X2)) -> ASEL(afrom(mark(X')), mark(X2))
mark(from(X)) -> afrom(mark(X))
mark(sel(X1, X2)) -> asel(mark(X1), mark(X2))
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(s(X)) -> s(mark(X))
mark(0) -> 0
asel(0, cons(X, Y)) -> mark(X)
asel(s(X), cons(Y, Z)) -> asel(mark(X), mark(Z))
asel(X1, X2) -> sel(X1, X2)
afrom(X) -> cons(mark(X), from(s(X)))
afrom(X) -> from(X)
POL(from(x1)) = 0 POL(a__sel(x1, x2)) = 1 POL(0) = 1 POL(MARK(x1)) = 1 POL(cons(x1, x2)) = 0 POL(A__FROM(x1)) = 1 POL(sel(x1, x2)) = 0 POL(s(x1)) = 1 POL(mark(x1)) = 1 POL(a__from(x1)) = 0 POL(A__SEL(x1, x2)) = x1
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 4
↳Remaining Obligation(s)
MARK(sel(X1, cons(X1'', X2''))) -> ASEL(mark(X1), cons(mark(X1''), X2''))
MARK(sel(X1, sel(X1'', X2''))) -> ASEL(mark(X1), asel(mark(X1''), mark(X2'')))
MARK(sel(X1, from(X'))) -> ASEL(mark(X1), afrom(mark(X')))
MARK(sel(0, X2)) -> ASEL(0, mark(X2))
ASEL(s(X), cons(Y, sel(X1', X2'))) -> ASEL(mark(X), asel(mark(X1'), mark(X2')))
ASEL(s(X), cons(Y, from(X''))) -> ASEL(mark(X), afrom(mark(X'')))
ASEL(s(0), cons(Y, Z)) -> ASEL(0, mark(Z))
ASEL(s(s(X'')), cons(Y, Z)) -> ASEL(s(mark(X'')), mark(Z))
ASEL(s(sel(X1', X2')), cons(Y, Z)) -> ASEL(asel(mark(X1'), mark(X2')), mark(Z))
MARK(sel(s(X'), X2)) -> ASEL(s(mark(X')), mark(X2))
ASEL(s(X), cons(Y, Z)) -> MARK(Z)
MARK(sel(sel(X1'', X2''), X2)) -> ASEL(asel(mark(X1''), mark(X2'')), mark(X2))
ASEL(s(X), cons(Y, Z)) -> MARK(X)
MARK(s(X)) -> MARK(X)
MARK(cons(X1, X2)) -> MARK(X1)
MARK(sel(X1, X2)) -> MARK(X2)
MARK(sel(X1, X2)) -> MARK(X1)
MARK(from(X)) -> MARK(X)
AFROM(X) -> MARK(X)
MARK(from(X)) -> AFROM(mark(X))
ASEL(0, cons(X, Y)) -> MARK(X)
ASEL(s(X), cons(Y, cons(X1', X2'))) -> ASEL(mark(X), cons(mark(X1'), X2'))
afrom(X) -> cons(mark(X), from(s(X)))
afrom(X) -> from(X)
asel(0, cons(X, Y)) -> mark(X)
asel(s(X), cons(Y, Z)) -> asel(mark(X), mark(Z))
asel(X1, X2) -> sel(X1, X2)
mark(from(X)) -> afrom(mark(X))
mark(sel(X1, X2)) -> asel(mark(X1), mark(X2))
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(s(X)) -> s(mark(X))
mark(0) -> 0
innermost