Term Rewriting System R:
[Z, X, Y, X1, X2]
fst(0, Z) -> nil
fst(s(X), cons(Y, Z)) -> cons(Y, nfst(activate(X), activate(Z)))
fst(X1, X2) -> nfst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
add(0, X) -> X
add(s(X), Y) -> s(nadd(activate(X), Y))
add(X1, X2) -> nadd(X1, X2)
len(nil) -> 0
len(cons(X, Z)) -> s(nlen(activate(Z)))
len(X) -> nlen(X)
activate(nfst(X1, X2)) -> fst(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nadd(X1, X2)) -> add(X1, X2)
activate(nlen(X)) -> len(X)
activate(X) -> X

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

FST(s(X), cons(Y, Z)) -> ACTIVATE(X)
FST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
ADD(s(X), Y) -> ACTIVATE(X)
LEN(cons(X, Z)) -> ACTIVATE(Z)
ACTIVATE(nfst(X1, X2)) -> FST(X1, X2)
ACTIVATE(nfrom(X)) -> FROM(X)
ACTIVATE(nadd(X1, X2)) -> ADD(X1, X2)
ACTIVATE(nlen(X)) -> LEN(X)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering


Dependency Pairs:

LEN(cons(X, Z)) -> ACTIVATE(Z)
ACTIVATE(nlen(X)) -> LEN(X)
ADD(s(X), Y) -> ACTIVATE(X)
ACTIVATE(nadd(X1, X2)) -> ADD(X1, X2)
FST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
ACTIVATE(nfst(X1, X2)) -> FST(X1, X2)
FST(s(X), cons(Y, Z)) -> ACTIVATE(X)


Rules:


fst(0, Z) -> nil
fst(s(X), cons(Y, Z)) -> cons(Y, nfst(activate(X), activate(Z)))
fst(X1, X2) -> nfst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
add(0, X) -> X
add(s(X), Y) -> s(nadd(activate(X), Y))
add(X1, X2) -> nadd(X1, X2)
len(nil) -> 0
len(cons(X, Z)) -> s(nlen(activate(Z)))
len(X) -> nlen(X)
activate(nfst(X1, X2)) -> fst(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nadd(X1, X2)) -> add(X1, X2)
activate(nlen(X)) -> len(X)
activate(X) -> X


Strategy:

innermost




The following dependency pairs can be strictly oriented:

LEN(cons(X, Z)) -> ACTIVATE(Z)
ACTIVATE(nlen(X)) -> LEN(X)
ADD(s(X), Y) -> ACTIVATE(X)
ACTIVATE(nadd(X1, X2)) -> ADD(X1, X2)
FST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
ACTIVATE(nfst(X1, X2)) -> FST(X1, X2)
FST(s(X), cons(Y, Z)) -> ACTIVATE(X)


There are no usable rules for innermost that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
cons > {LEN, s, ACTIVATE}
{ADD, nadd}
{FST, nfst}

resulting in one new DP problem.
Used Argument Filtering System:
ACTIVATE(x1) -> ACTIVATE(x1)
LEN(x1) -> LEN(x1)
nlen(x1) -> nlen(x1)
nfst(x1, x2) -> nfst(x1, x2)
FST(x1, x2) -> FST(x1, x2)
s(x1) -> s(x1)
cons(x1, x2) -> cons(x1, x2)
ADD(x1, x2) -> ADD(x1, x2)
nadd(x1, x2) -> nadd(x1, x2)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 2
Dependency Graph


Dependency Pair:


Rules:


fst(0, Z) -> nil
fst(s(X), cons(Y, Z)) -> cons(Y, nfst(activate(X), activate(Z)))
fst(X1, X2) -> nfst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
add(0, X) -> X
add(s(X), Y) -> s(nadd(activate(X), Y))
add(X1, X2) -> nadd(X1, X2)
len(nil) -> 0
len(cons(X, Z)) -> s(nlen(activate(Z)))
len(X) -> nlen(X)
activate(nfst(X1, X2)) -> fst(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nadd(X1, X2)) -> add(X1, X2)
activate(nlen(X)) -> len(X)
activate(X) -> X


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes