R
↳Dependency Pair Analysis
FST(s(X), cons(Y, Z)) -> ACTIVATE(X)
FST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
ADD(s(X), Y) -> ACTIVATE(X)
LEN(cons(X, Z)) -> ACTIVATE(Z)
ACTIVATE(nfst(X1, X2)) -> FST(X1, X2)
ACTIVATE(nfrom(X)) -> FROM(X)
ACTIVATE(nadd(X1, X2)) -> ADD(X1, X2)
ACTIVATE(nlen(X)) -> LEN(X)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
LEN(cons(X, Z)) -> ACTIVATE(Z)
ACTIVATE(nlen(X)) -> LEN(X)
ADD(s(X), Y) -> ACTIVATE(X)
ACTIVATE(nadd(X1, X2)) -> ADD(X1, X2)
FST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
ACTIVATE(nfst(X1, X2)) -> FST(X1, X2)
FST(s(X), cons(Y, Z)) -> ACTIVATE(X)
fst(0, Z) -> nil
fst(s(X), cons(Y, Z)) -> cons(Y, nfst(activate(X), activate(Z)))
fst(X1, X2) -> nfst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
add(0, X) -> X
add(s(X), Y) -> s(nadd(activate(X), Y))
add(X1, X2) -> nadd(X1, X2)
len(nil) -> 0
len(cons(X, Z)) -> s(nlen(activate(Z)))
len(X) -> nlen(X)
activate(nfst(X1, X2)) -> fst(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nadd(X1, X2)) -> add(X1, X2)
activate(nlen(X)) -> len(X)
activate(X) -> X
innermost
three new Dependency Pairs are created:
FST(s(X), cons(Y, Z)) -> ACTIVATE(X)
FST(s(nfst(X1'', X2'')), cons(Y, Z)) -> ACTIVATE(nfst(X1'', X2''))
FST(s(nadd(X1'', X2'')), cons(Y, Z)) -> ACTIVATE(nadd(X1'', X2''))
FST(s(nlen(X'')), cons(Y, Z)) -> ACTIVATE(nlen(X''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
FST(s(nlen(X'')), cons(Y, Z)) -> ACTIVATE(nlen(X''))
FST(s(nadd(X1'', X2'')), cons(Y, Z)) -> ACTIVATE(nadd(X1'', X2''))
FST(s(nfst(X1'', X2'')), cons(Y, Z)) -> ACTIVATE(nfst(X1'', X2''))
ACTIVATE(nlen(X)) -> LEN(X)
ADD(s(X), Y) -> ACTIVATE(X)
ACTIVATE(nadd(X1, X2)) -> ADD(X1, X2)
FST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
ACTIVATE(nfst(X1, X2)) -> FST(X1, X2)
LEN(cons(X, Z)) -> ACTIVATE(Z)
fst(0, Z) -> nil
fst(s(X), cons(Y, Z)) -> cons(Y, nfst(activate(X), activate(Z)))
fst(X1, X2) -> nfst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
add(0, X) -> X
add(s(X), Y) -> s(nadd(activate(X), Y))
add(X1, X2) -> nadd(X1, X2)
len(nil) -> 0
len(cons(X, Z)) -> s(nlen(activate(Z)))
len(X) -> nlen(X)
activate(nfst(X1, X2)) -> fst(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nadd(X1, X2)) -> add(X1, X2)
activate(nlen(X)) -> len(X)
activate(X) -> X
innermost
three new Dependency Pairs are created:
FST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
FST(s(X), cons(Y, nfst(X1'', X2''))) -> ACTIVATE(nfst(X1'', X2''))
FST(s(X), cons(Y, nadd(X1'', X2''))) -> ACTIVATE(nadd(X1'', X2''))
FST(s(X), cons(Y, nlen(X''))) -> ACTIVATE(nlen(X''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 3
↳Forward Instantiation Transformation
FST(s(X), cons(Y, nlen(X''))) -> ACTIVATE(nlen(X''))
FST(s(X), cons(Y, nadd(X1'', X2''))) -> ACTIVATE(nadd(X1'', X2''))
FST(s(X), cons(Y, nfst(X1'', X2''))) -> ACTIVATE(nfst(X1'', X2''))
ADD(s(X), Y) -> ACTIVATE(X)
ACTIVATE(nadd(X1, X2)) -> ADD(X1, X2)
FST(s(nadd(X1'', X2'')), cons(Y, Z)) -> ACTIVATE(nadd(X1'', X2''))
FST(s(nfst(X1'', X2'')), cons(Y, Z)) -> ACTIVATE(nfst(X1'', X2''))
ACTIVATE(nfst(X1, X2)) -> FST(X1, X2)
LEN(cons(X, Z)) -> ACTIVATE(Z)
ACTIVATE(nlen(X)) -> LEN(X)
FST(s(nlen(X'')), cons(Y, Z)) -> ACTIVATE(nlen(X''))
fst(0, Z) -> nil
fst(s(X), cons(Y, Z)) -> cons(Y, nfst(activate(X), activate(Z)))
fst(X1, X2) -> nfst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
add(0, X) -> X
add(s(X), Y) -> s(nadd(activate(X), Y))
add(X1, X2) -> nadd(X1, X2)
len(nil) -> 0
len(cons(X, Z)) -> s(nlen(activate(Z)))
len(X) -> nlen(X)
activate(nfst(X1, X2)) -> fst(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nadd(X1, X2)) -> add(X1, X2)
activate(nlen(X)) -> len(X)
activate(X) -> X
innermost
three new Dependency Pairs are created:
ADD(s(X), Y) -> ACTIVATE(X)
ADD(s(nfst(X1'', X2'')), Y) -> ACTIVATE(nfst(X1'', X2''))
ADD(s(nadd(X1'', X2'')), Y) -> ACTIVATE(nadd(X1'', X2''))
ADD(s(nlen(X'')), Y) -> ACTIVATE(nlen(X''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 4
↳Forward Instantiation Transformation
FST(s(X), cons(Y, nadd(X1'', X2''))) -> ACTIVATE(nadd(X1'', X2''))
FST(s(X), cons(Y, nfst(X1'', X2''))) -> ACTIVATE(nfst(X1'', X2''))
FST(s(nlen(X'')), cons(Y, Z)) -> ACTIVATE(nlen(X''))
ADD(s(nlen(X'')), Y) -> ACTIVATE(nlen(X''))
ADD(s(nadd(X1'', X2'')), Y) -> ACTIVATE(nadd(X1'', X2''))
ADD(s(nfst(X1'', X2'')), Y) -> ACTIVATE(nfst(X1'', X2''))
ACTIVATE(nadd(X1, X2)) -> ADD(X1, X2)
FST(s(nadd(X1'', X2'')), cons(Y, Z)) -> ACTIVATE(nadd(X1'', X2''))
FST(s(nfst(X1'', X2'')), cons(Y, Z)) -> ACTIVATE(nfst(X1'', X2''))
ACTIVATE(nfst(X1, X2)) -> FST(X1, X2)
LEN(cons(X, Z)) -> ACTIVATE(Z)
ACTIVATE(nlen(X)) -> LEN(X)
FST(s(X), cons(Y, nlen(X''))) -> ACTIVATE(nlen(X''))
fst(0, Z) -> nil
fst(s(X), cons(Y, Z)) -> cons(Y, nfst(activate(X), activate(Z)))
fst(X1, X2) -> nfst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
add(0, X) -> X
add(s(X), Y) -> s(nadd(activate(X), Y))
add(X1, X2) -> nadd(X1, X2)
len(nil) -> 0
len(cons(X, Z)) -> s(nlen(activate(Z)))
len(X) -> nlen(X)
activate(nfst(X1, X2)) -> fst(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nadd(X1, X2)) -> add(X1, X2)
activate(nlen(X)) -> len(X)
activate(X) -> X
innermost
three new Dependency Pairs are created:
LEN(cons(X, Z)) -> ACTIVATE(Z)
LEN(cons(X, nfst(X1'', X2''))) -> ACTIVATE(nfst(X1'', X2''))
LEN(cons(X, nadd(X1'', X2''))) -> ACTIVATE(nadd(X1'', X2''))
LEN(cons(X, nlen(X''))) -> ACTIVATE(nlen(X''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 5
↳Forward Instantiation Transformation
ADD(s(nlen(X'')), Y) -> ACTIVATE(nlen(X''))
ADD(s(nadd(X1'', X2'')), Y) -> ACTIVATE(nadd(X1'', X2''))
FST(s(X), cons(Y, nlen(X''))) -> ACTIVATE(nlen(X''))
FST(s(X), cons(Y, nfst(X1'', X2''))) -> ACTIVATE(nfst(X1'', X2''))
LEN(cons(X, nlen(X''))) -> ACTIVATE(nlen(X''))
LEN(cons(X, nadd(X1'', X2''))) -> ACTIVATE(nadd(X1'', X2''))
LEN(cons(X, nfst(X1'', X2''))) -> ACTIVATE(nfst(X1'', X2''))
ACTIVATE(nlen(X)) -> LEN(X)
FST(s(nlen(X'')), cons(Y, Z)) -> ACTIVATE(nlen(X''))
FST(s(nadd(X1'', X2'')), cons(Y, Z)) -> ACTIVATE(nadd(X1'', X2''))
FST(s(nfst(X1'', X2'')), cons(Y, Z)) -> ACTIVATE(nfst(X1'', X2''))
ACTIVATE(nfst(X1, X2)) -> FST(X1, X2)
ADD(s(nfst(X1'', X2'')), Y) -> ACTIVATE(nfst(X1'', X2''))
ACTIVATE(nadd(X1, X2)) -> ADD(X1, X2)
FST(s(X), cons(Y, nadd(X1'', X2''))) -> ACTIVATE(nadd(X1'', X2''))
fst(0, Z) -> nil
fst(s(X), cons(Y, Z)) -> cons(Y, nfst(activate(X), activate(Z)))
fst(X1, X2) -> nfst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
add(0, X) -> X
add(s(X), Y) -> s(nadd(activate(X), Y))
add(X1, X2) -> nadd(X1, X2)
len(nil) -> 0
len(cons(X, Z)) -> s(nlen(activate(Z)))
len(X) -> nlen(X)
activate(nfst(X1, X2)) -> fst(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nadd(X1, X2)) -> add(X1, X2)
activate(nlen(X)) -> len(X)
activate(X) -> X
innermost
six new Dependency Pairs are created:
ACTIVATE(nfst(X1, X2)) -> FST(X1, X2)
ACTIVATE(nfst(s(nfst(X1'''', X2'''')), cons(Y'', Z''))) -> FST(s(nfst(X1'''', X2'''')), cons(Y'', Z''))
ACTIVATE(nfst(s(nadd(X1'''', X2'''')), cons(Y'', Z''))) -> FST(s(nadd(X1'''', X2'''')), cons(Y'', Z''))
ACTIVATE(nfst(s(nlen(X'''')), cons(Y'', Z''))) -> FST(s(nlen(X'''')), cons(Y'', Z''))
ACTIVATE(nfst(s(X''), cons(Y'', nfst(X1'''', X2'''')))) -> FST(s(X''), cons(Y'', nfst(X1'''', X2'''')))
ACTIVATE(nfst(s(X''), cons(Y'', nadd(X1'''', X2'''')))) -> FST(s(X''), cons(Y'', nadd(X1'''', X2'''')))
ACTIVATE(nfst(s(X''), cons(Y'', nlen(X'''')))) -> FST(s(X''), cons(Y'', nlen(X'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 6
↳Forward Instantiation Transformation
LEN(cons(X, nlen(X''))) -> ACTIVATE(nlen(X''))
LEN(cons(X, nadd(X1'', X2''))) -> ACTIVATE(nadd(X1'', X2''))
ADD(s(nadd(X1'', X2'')), Y) -> ACTIVATE(nadd(X1'', X2''))
FST(s(X), cons(Y, nlen(X''))) -> ACTIVATE(nlen(X''))
ACTIVATE(nfst(s(X''), cons(Y'', nlen(X'''')))) -> FST(s(X''), cons(Y'', nlen(X'''')))
FST(s(X), cons(Y, nadd(X1'', X2''))) -> ACTIVATE(nadd(X1'', X2''))
ACTIVATE(nfst(s(X''), cons(Y'', nadd(X1'''', X2'''')))) -> FST(s(X''), cons(Y'', nadd(X1'''', X2'''')))
ACTIVATE(nfst(s(X''), cons(Y'', nfst(X1'''', X2'''')))) -> FST(s(X''), cons(Y'', nfst(X1'''', X2'''')))
FST(s(X), cons(Y, nfst(X1'', X2''))) -> ACTIVATE(nfst(X1'', X2''))
FST(s(nlen(X'')), cons(Y, Z)) -> ACTIVATE(nlen(X''))
ACTIVATE(nfst(s(nlen(X'''')), cons(Y'', Z''))) -> FST(s(nlen(X'''')), cons(Y'', Z''))
ADD(s(nfst(X1'', X2'')), Y) -> ACTIVATE(nfst(X1'', X2''))
ACTIVATE(nadd(X1, X2)) -> ADD(X1, X2)
FST(s(nadd(X1'', X2'')), cons(Y, Z)) -> ACTIVATE(nadd(X1'', X2''))
ACTIVATE(nfst(s(nadd(X1'''', X2'''')), cons(Y'', Z''))) -> FST(s(nadd(X1'''', X2'''')), cons(Y'', Z''))
FST(s(nfst(X1'', X2'')), cons(Y, Z)) -> ACTIVATE(nfst(X1'', X2''))
ACTIVATE(nfst(s(nfst(X1'''', X2'''')), cons(Y'', Z''))) -> FST(s(nfst(X1'''', X2'''')), cons(Y'', Z''))
LEN(cons(X, nfst(X1'', X2''))) -> ACTIVATE(nfst(X1'', X2''))
ACTIVATE(nlen(X)) -> LEN(X)
ADD(s(nlen(X'')), Y) -> ACTIVATE(nlen(X''))
fst(0, Z) -> nil
fst(s(X), cons(Y, Z)) -> cons(Y, nfst(activate(X), activate(Z)))
fst(X1, X2) -> nfst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
add(0, X) -> X
add(s(X), Y) -> s(nadd(activate(X), Y))
add(X1, X2) -> nadd(X1, X2)
len(nil) -> 0
len(cons(X, Z)) -> s(nlen(activate(Z)))
len(X) -> nlen(X)
activate(nfst(X1, X2)) -> fst(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nadd(X1, X2)) -> add(X1, X2)
activate(nlen(X)) -> len(X)
activate(X) -> X
innermost
three new Dependency Pairs are created:
ACTIVATE(nadd(X1, X2)) -> ADD(X1, X2)
ACTIVATE(nadd(s(nfst(X1'''', X2'''')), X2')) -> ADD(s(nfst(X1'''', X2'''')), X2')
ACTIVATE(nadd(s(nadd(X1'''', X2'''')), X2')) -> ADD(s(nadd(X1'''', X2'''')), X2')
ACTIVATE(nadd(s(nlen(X'''')), X2')) -> ADD(s(nlen(X'''')), X2')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 7
↳Forward Instantiation Transformation
LEN(cons(X, nadd(X1'', X2''))) -> ACTIVATE(nadd(X1'', X2''))
FST(s(X), cons(Y, nlen(X''))) -> ACTIVATE(nlen(X''))
ACTIVATE(nfst(s(X''), cons(Y'', nlen(X'''')))) -> FST(s(X''), cons(Y'', nlen(X'''')))
ADD(s(nlen(X'')), Y) -> ACTIVATE(nlen(X''))
ACTIVATE(nadd(s(nlen(X'''')), X2')) -> ADD(s(nlen(X'''')), X2')
ADD(s(nadd(X1'', X2'')), Y) -> ACTIVATE(nadd(X1'', X2''))
ACTIVATE(nadd(s(nadd(X1'''', X2'''')), X2')) -> ADD(s(nadd(X1'''', X2'''')), X2')
FST(s(X), cons(Y, nadd(X1'', X2''))) -> ACTIVATE(nadd(X1'', X2''))
ACTIVATE(nfst(s(X''), cons(Y'', nadd(X1'''', X2'''')))) -> FST(s(X''), cons(Y'', nadd(X1'''', X2'''')))
ACTIVATE(nfst(s(X''), cons(Y'', nfst(X1'''', X2'''')))) -> FST(s(X''), cons(Y'', nfst(X1'''', X2'''')))
FST(s(X), cons(Y, nfst(X1'', X2''))) -> ACTIVATE(nfst(X1'', X2''))
FST(s(nlen(X'')), cons(Y, Z)) -> ACTIVATE(nlen(X''))
ACTIVATE(nfst(s(nlen(X'''')), cons(Y'', Z''))) -> FST(s(nlen(X'''')), cons(Y'', Z''))
ADD(s(nfst(X1'', X2'')), Y) -> ACTIVATE(nfst(X1'', X2''))
ACTIVATE(nadd(s(nfst(X1'''', X2'''')), X2')) -> ADD(s(nfst(X1'''', X2'''')), X2')
FST(s(nadd(X1'', X2'')), cons(Y, Z)) -> ACTIVATE(nadd(X1'', X2''))
ACTIVATE(nfst(s(nadd(X1'''', X2'''')), cons(Y'', Z''))) -> FST(s(nadd(X1'''', X2'''')), cons(Y'', Z''))
FST(s(nfst(X1'', X2'')), cons(Y, Z)) -> ACTIVATE(nfst(X1'', X2''))
ACTIVATE(nfst(s(nfst(X1'''', X2'''')), cons(Y'', Z''))) -> FST(s(nfst(X1'''', X2'''')), cons(Y'', Z''))
LEN(cons(X, nfst(X1'', X2''))) -> ACTIVATE(nfst(X1'', X2''))
ACTIVATE(nlen(X)) -> LEN(X)
LEN(cons(X, nlen(X''))) -> ACTIVATE(nlen(X''))
fst(0, Z) -> nil
fst(s(X), cons(Y, Z)) -> cons(Y, nfst(activate(X), activate(Z)))
fst(X1, X2) -> nfst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
add(0, X) -> X
add(s(X), Y) -> s(nadd(activate(X), Y))
add(X1, X2) -> nadd(X1, X2)
len(nil) -> 0
len(cons(X, Z)) -> s(nlen(activate(Z)))
len(X) -> nlen(X)
activate(nfst(X1, X2)) -> fst(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nadd(X1, X2)) -> add(X1, X2)
activate(nlen(X)) -> len(X)
activate(X) -> X
innermost
three new Dependency Pairs are created:
ACTIVATE(nlen(X)) -> LEN(X)
ACTIVATE(nlen(cons(X'', nfst(X1'''', X2'''')))) -> LEN(cons(X'', nfst(X1'''', X2'''')))
ACTIVATE(nlen(cons(X'', nadd(X1'''', X2'''')))) -> LEN(cons(X'', nadd(X1'''', X2'''')))
ACTIVATE(nlen(cons(X'', nlen(X'''')))) -> LEN(cons(X'', nlen(X'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 8
↳Remaining Obligation(s)
FST(s(X), cons(Y, nlen(X''))) -> ACTIVATE(nlen(X''))
ACTIVATE(nfst(s(X''), cons(Y'', nlen(X'''')))) -> FST(s(X''), cons(Y'', nlen(X'''')))
FST(s(X), cons(Y, nadd(X1'', X2''))) -> ACTIVATE(nadd(X1'', X2''))
ACTIVATE(nfst(s(X''), cons(Y'', nadd(X1'''', X2'''')))) -> FST(s(X''), cons(Y'', nadd(X1'''', X2'''')))
ACTIVATE(nfst(s(X''), cons(Y'', nfst(X1'''', X2'''')))) -> FST(s(X''), cons(Y'', nfst(X1'''', X2'''')))
FST(s(X), cons(Y, nfst(X1'', X2''))) -> ACTIVATE(nfst(X1'', X2''))
LEN(cons(X, nlen(X''))) -> ACTIVATE(nlen(X''))
ACTIVATE(nlen(cons(X'', nlen(X'''')))) -> LEN(cons(X'', nlen(X'''')))
ACTIVATE(nlen(cons(X'', nadd(X1'''', X2'''')))) -> LEN(cons(X'', nadd(X1'''', X2'''')))
FST(s(nlen(X'')), cons(Y, Z)) -> ACTIVATE(nlen(X''))
ACTIVATE(nfst(s(nlen(X'''')), cons(Y'', Z''))) -> FST(s(nlen(X'''')), cons(Y'', Z''))
LEN(cons(X, nfst(X1'', X2''))) -> ACTIVATE(nfst(X1'', X2''))
ACTIVATE(nlen(cons(X'', nfst(X1'''', X2'''')))) -> LEN(cons(X'', nfst(X1'''', X2'''')))
ADD(s(nlen(X'')), Y) -> ACTIVATE(nlen(X''))
ACTIVATE(nadd(s(nlen(X'''')), X2')) -> ADD(s(nlen(X'''')), X2')
ADD(s(nadd(X1'', X2'')), Y) -> ACTIVATE(nadd(X1'', X2''))
ACTIVATE(nadd(s(nadd(X1'''', X2'''')), X2')) -> ADD(s(nadd(X1'''', X2'''')), X2')
FST(s(nadd(X1'', X2'')), cons(Y, Z)) -> ACTIVATE(nadd(X1'', X2''))
ACTIVATE(nfst(s(nadd(X1'''', X2'''')), cons(Y'', Z''))) -> FST(s(nadd(X1'''', X2'''')), cons(Y'', Z''))
FST(s(nfst(X1'', X2'')), cons(Y, Z)) -> ACTIVATE(nfst(X1'', X2''))
ACTIVATE(nfst(s(nfst(X1'''', X2'''')), cons(Y'', Z''))) -> FST(s(nfst(X1'''', X2'''')), cons(Y'', Z''))
ADD(s(nfst(X1'', X2'')), Y) -> ACTIVATE(nfst(X1'', X2''))
ACTIVATE(nadd(s(nfst(X1'''', X2'''')), X2')) -> ADD(s(nfst(X1'''', X2'''')), X2')
LEN(cons(X, nadd(X1'', X2''))) -> ACTIVATE(nadd(X1'', X2''))
fst(0, Z) -> nil
fst(s(X), cons(Y, Z)) -> cons(Y, nfst(activate(X), activate(Z)))
fst(X1, X2) -> nfst(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
add(0, X) -> X
add(s(X), Y) -> s(nadd(activate(X), Y))
add(X1, X2) -> nadd(X1, X2)
len(nil) -> 0
len(cons(X, Z)) -> s(nlen(activate(Z)))
len(X) -> nlen(X)
activate(nfst(X1, X2)) -> fst(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nadd(X1, X2)) -> add(X1, X2)
activate(nlen(X)) -> len(X)
activate(X) -> X
innermost