Term Rewriting System R:
[Z, X, Y, X1, X2]
afst(0, Z) -> nil
afst(s(X), cons(Y, Z)) -> cons(mark(Y), fst(X, Z))
afst(X1, X2) -> fst(X1, X2)
afrom(X) -> cons(mark(X), from(s(X)))
afrom(X) -> from(X)
alen(nil) -> 0
alen(cons(X, Z)) -> s(len(Z))
alen(X) -> len(X)
mark(fst(X1, X2)) -> afst(mark(X1), mark(X2))
mark(from(X)) -> afrom(mark(X))
mark(len(X)) -> alen(mark(X))
mark(0) -> 0
mark(s(X)) -> s(X)
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)

Innermost Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

AFST(s(X), cons(Y, Z)) -> MARK(Y)
AFROM(X) -> MARK(X)
MARK(fst(X1, X2)) -> AFST(mark(X1), mark(X2))
MARK(fst(X1, X2)) -> MARK(X1)
MARK(fst(X1, X2)) -> MARK(X2)
MARK(from(X)) -> AFROM(mark(X))
MARK(from(X)) -> MARK(X)
MARK(len(X)) -> ALEN(mark(X))
MARK(len(X)) -> MARK(X)
MARK(cons(X1, X2)) -> MARK(X1)

Furthermore, R contains one SCC.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polynomial Ordering`

Dependency Pairs:

MARK(cons(X1, X2)) -> MARK(X1)
MARK(len(X)) -> MARK(X)
MARK(from(X)) -> MARK(X)
AFROM(X) -> MARK(X)
MARK(from(X)) -> AFROM(mark(X))
MARK(fst(X1, X2)) -> MARK(X2)
MARK(fst(X1, X2)) -> MARK(X1)
MARK(fst(X1, X2)) -> AFST(mark(X1), mark(X2))
AFST(s(X), cons(Y, Z)) -> MARK(Y)

Rules:

afst(0, Z) -> nil
afst(s(X), cons(Y, Z)) -> cons(mark(Y), fst(X, Z))
afst(X1, X2) -> fst(X1, X2)
afrom(X) -> cons(mark(X), from(s(X)))
afrom(X) -> from(X)
alen(nil) -> 0
alen(cons(X, Z)) -> s(len(Z))
alen(X) -> len(X)
mark(fst(X1, X2)) -> afst(mark(X1), mark(X2))
mark(from(X)) -> afrom(mark(X))
mark(len(X)) -> alen(mark(X))
mark(0) -> 0
mark(s(X)) -> s(X)
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)

Strategy:

innermost

The following dependency pair can be strictly oriented:

MARK(len(X)) -> MARK(X)

Additionally, the following usable rules for innermost w.r.t. to the implicit AFS can be oriented:

afst(0, Z) -> nil
afst(s(X), cons(Y, Z)) -> cons(mark(Y), fst(X, Z))
afst(X1, X2) -> fst(X1, X2)
mark(fst(X1, X2)) -> afst(mark(X1), mark(X2))
mark(from(X)) -> afrom(mark(X))
mark(len(X)) -> alen(mark(X))
mark(0) -> 0
mark(s(X)) -> s(X)
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)
afrom(X) -> cons(mark(X), from(s(X)))
afrom(X) -> from(X)
alen(nil) -> 0
alen(cons(X, Z)) -> s(len(Z))
alen(X) -> len(X)

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(from(x1)) =  x1 POL(MARK(x1)) =  x1 POL(len(x1)) =  1 + x1 POL(a__len(x1)) =  1 + x1 POL(A__FROM(x1)) =  x1 POL(A__FST(x1, x2)) =  x2 POL(mark(x1)) =  x1 POL(a__from(x1)) =  x1 POL(a__add(x1, x2)) =  x1 + x2 POL(add(x1, x2)) =  x1 + x2 POL(A__ADD(x1, x2)) =  x2 POL(0) =  0 POL(cons(x1, x2)) =  x1 POL(a__fst(x1, x2)) =  x1 + x2 POL(nil) =  0 POL(fst(x1, x2)) =  x1 + x2 POL(s(x1)) =  0

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`           →DP Problem 2`
`             ↳Polynomial Ordering`

Dependency Pairs:

MARK(cons(X1, X2)) -> MARK(X1)
MARK(from(X)) -> MARK(X)
AFROM(X) -> MARK(X)
MARK(from(X)) -> AFROM(mark(X))
MARK(fst(X1, X2)) -> MARK(X2)
MARK(fst(X1, X2)) -> MARK(X1)
MARK(fst(X1, X2)) -> AFST(mark(X1), mark(X2))
AFST(s(X), cons(Y, Z)) -> MARK(Y)

Rules:

afst(0, Z) -> nil
afst(s(X), cons(Y, Z)) -> cons(mark(Y), fst(X, Z))
afst(X1, X2) -> fst(X1, X2)
afrom(X) -> cons(mark(X), from(s(X)))
afrom(X) -> from(X)
alen(nil) -> 0
alen(cons(X, Z)) -> s(len(Z))
alen(X) -> len(X)
mark(fst(X1, X2)) -> afst(mark(X1), mark(X2))
mark(from(X)) -> afrom(mark(X))
mark(len(X)) -> alen(mark(X))
mark(0) -> 0
mark(s(X)) -> s(X)
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)

Strategy:

innermost

The following dependency pairs can be strictly oriented:

MARK(from(X)) -> MARK(X)
MARK(from(X)) -> AFROM(mark(X))

Additionally, the following usable rules for innermost w.r.t. to the implicit AFS can be oriented:

afst(0, Z) -> nil
afst(s(X), cons(Y, Z)) -> cons(mark(Y), fst(X, Z))
afst(X1, X2) -> fst(X1, X2)
mark(fst(X1, X2)) -> afst(mark(X1), mark(X2))
mark(from(X)) -> afrom(mark(X))
mark(len(X)) -> alen(mark(X))
mark(0) -> 0
mark(s(X)) -> s(X)
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)
afrom(X) -> cons(mark(X), from(s(X)))
afrom(X) -> from(X)
alen(nil) -> 0
alen(cons(X, Z)) -> s(len(Z))
alen(X) -> len(X)

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(from(x1)) =  1 + x1 POL(MARK(x1)) =  x1 POL(len(x1)) =  0 POL(a__len(x1)) =  0 POL(A__FROM(x1)) =  x1 POL(A__FST(x1, x2)) =  x2 POL(mark(x1)) =  x1 POL(a__from(x1)) =  1 + x1 POL(a__add(x1, x2)) =  x1 + x2 POL(add(x1, x2)) =  x1 + x2 POL(A__ADD(x1, x2)) =  x2 POL(0) =  0 POL(cons(x1, x2)) =  x1 POL(a__fst(x1, x2)) =  x1 + x2 POL(nil) =  0 POL(fst(x1, x2)) =  x1 + x2 POL(s(x1)) =  0

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`           →DP Problem 2`
`             ↳Polo`
`             ...`
`               →DP Problem 3`
`                 ↳Dependency Graph`

Dependency Pairs:

MARK(cons(X1, X2)) -> MARK(X1)
AFROM(X) -> MARK(X)
MARK(fst(X1, X2)) -> MARK(X2)
MARK(fst(X1, X2)) -> MARK(X1)
MARK(fst(X1, X2)) -> AFST(mark(X1), mark(X2))
AFST(s(X), cons(Y, Z)) -> MARK(Y)

Rules:

afst(0, Z) -> nil
afst(s(X), cons(Y, Z)) -> cons(mark(Y), fst(X, Z))
afst(X1, X2) -> fst(X1, X2)
afrom(X) -> cons(mark(X), from(s(X)))
afrom(X) -> from(X)
alen(nil) -> 0
alen(cons(X, Z)) -> s(len(Z))
alen(X) -> len(X)
mark(fst(X1, X2)) -> afst(mark(X1), mark(X2))
mark(from(X)) -> afrom(mark(X))
mark(len(X)) -> alen(mark(X))
mark(0) -> 0
mark(s(X)) -> s(X)
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)

Strategy:

innermost

Using the Dependency Graph the DP problem was split into 1 DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`           →DP Problem 2`
`             ↳Polo`
`             ...`
`               →DP Problem 4`
`                 ↳Polynomial Ordering`

Dependency Pairs:

MARK(fst(X1, X2)) -> MARK(X2)
MARK(fst(X1, X2)) -> MARK(X1)
AFST(s(X), cons(Y, Z)) -> MARK(Y)
MARK(fst(X1, X2)) -> AFST(mark(X1), mark(X2))
MARK(cons(X1, X2)) -> MARK(X1)

Rules:

afst(0, Z) -> nil
afst(s(X), cons(Y, Z)) -> cons(mark(Y), fst(X, Z))
afst(X1, X2) -> fst(X1, X2)
afrom(X) -> cons(mark(X), from(s(X)))
afrom(X) -> from(X)
alen(nil) -> 0
alen(cons(X, Z)) -> s(len(Z))
alen(X) -> len(X)
mark(fst(X1, X2)) -> afst(mark(X1), mark(X2))
mark(from(X)) -> afrom(mark(X))
mark(len(X)) -> alen(mark(X))
mark(0) -> 0
mark(s(X)) -> s(X)
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)

Strategy:

innermost

The following dependency pairs can be strictly oriented:

AFST(s(X), cons(Y, Z)) -> MARK(Y)
MARK(cons(X1, X2)) -> MARK(X1)

Additionally, the following usable rules for innermost w.r.t. to the implicit AFS can be oriented:

afst(0, Z) -> nil
afst(s(X), cons(Y, Z)) -> cons(mark(Y), fst(X, Z))
afst(X1, X2) -> fst(X1, X2)
mark(fst(X1, X2)) -> afst(mark(X1), mark(X2))
mark(from(X)) -> afrom(mark(X))
mark(len(X)) -> alen(mark(X))
mark(0) -> 0
mark(s(X)) -> s(X)
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)
afrom(X) -> cons(mark(X), from(s(X)))
afrom(X) -> from(X)
alen(nil) -> 0
alen(cons(X, Z)) -> s(len(Z))
alen(X) -> len(X)

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(from(x1)) =  1 + x1 POL(MARK(x1)) =  x1 POL(len(x1)) =  0 POL(a__len(x1)) =  0 POL(A__FST(x1, x2)) =  x2 POL(mark(x1)) =  x1 POL(a__from(x1)) =  1 + x1 POL(a__add(x1, x2)) =  x1 + x2 POL(add(x1, x2)) =  x1 + x2 POL(A__ADD(x1, x2)) =  x2 POL(0) =  0 POL(a__fst(x1, x2)) =  x1 + x2 POL(cons(x1, x2)) =  1 + x1 POL(nil) =  0 POL(fst(x1, x2)) =  x1 + x2 POL(s(x1)) =  0

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`           →DP Problem 2`
`             ↳Polo`
`             ...`
`               →DP Problem 5`
`                 ↳Dependency Graph`

Dependency Pairs:

MARK(fst(X1, X2)) -> MARK(X2)
MARK(fst(X1, X2)) -> MARK(X1)
MARK(fst(X1, X2)) -> AFST(mark(X1), mark(X2))

Rules:

afst(0, Z) -> nil
afst(s(X), cons(Y, Z)) -> cons(mark(Y), fst(X, Z))
afst(X1, X2) -> fst(X1, X2)
afrom(X) -> cons(mark(X), from(s(X)))
afrom(X) -> from(X)
alen(nil) -> 0
alen(cons(X, Z)) -> s(len(Z))
alen(X) -> len(X)
mark(fst(X1, X2)) -> afst(mark(X1), mark(X2))
mark(from(X)) -> afrom(mark(X))
mark(len(X)) -> alen(mark(X))
mark(0) -> 0
mark(s(X)) -> s(X)
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)

Strategy:

innermost

Using the Dependency Graph the DP problem was split into 1 DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`           →DP Problem 2`
`             ↳Polo`
`             ...`
`               →DP Problem 6`
`                 ↳Polynomial Ordering`

Dependency Pairs:

MARK(fst(X1, X2)) -> MARK(X2)
MARK(fst(X1, X2)) -> MARK(X1)

Rules:

afst(0, Z) -> nil
afst(s(X), cons(Y, Z)) -> cons(mark(Y), fst(X, Z))
afst(X1, X2) -> fst(X1, X2)
afrom(X) -> cons(mark(X), from(s(X)))
afrom(X) -> from(X)
alen(nil) -> 0
alen(cons(X, Z)) -> s(len(Z))
alen(X) -> len(X)
mark(fst(X1, X2)) -> afst(mark(X1), mark(X2))
mark(from(X)) -> afrom(mark(X))
mark(len(X)) -> alen(mark(X))
mark(0) -> 0
mark(s(X)) -> s(X)
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)

Strategy:

innermost

The following dependency pairs can be strictly oriented:

Additionally, the following usable rules for innermost w.r.t. to the implicit AFS can be oriented:

afst(0, Z) -> nil
afst(s(X), cons(Y, Z)) -> cons(mark(Y), fst(X, Z))
afst(X1, X2) -> fst(X1, X2)
mark(fst(X1, X2)) -> afst(mark(X1), mark(X2))
mark(from(X)) -> afrom(mark(X))
mark(len(X)) -> alen(mark(X))
mark(0) -> 0
mark(s(X)) -> s(X)
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)
afrom(X) -> cons(mark(X), from(s(X)))
afrom(X) -> from(X)
alen(nil) -> 0
alen(cons(X, Z)) -> s(len(Z))
alen(X) -> len(X)

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(from(x1)) =  0 POL(MARK(x1)) =  x1 POL(len(x1)) =  0 POL(a__len(x1)) =  0 POL(mark(x1)) =  x1 POL(a__from(x1)) =  0 POL(a__add(x1, x2)) =  1 + x1 + x2 POL(add(x1, x2)) =  1 + x1 + x2 POL(A__ADD(x1, x2)) =  x2 POL(0) =  0 POL(a__fst(x1, x2)) =  x1 + x2 POL(cons(x1, x2)) =  0 POL(nil) =  0 POL(fst(x1, x2)) =  x1 + x2 POL(s(x1)) =  0

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`           →DP Problem 2`
`             ↳Polo`
`             ...`
`               →DP Problem 7`
`                 ↳Dependency Graph`

Dependency Pairs:

MARK(fst(X1, X2)) -> MARK(X2)
MARK(fst(X1, X2)) -> MARK(X1)

Rules:

afst(0, Z) -> nil
afst(s(X), cons(Y, Z)) -> cons(mark(Y), fst(X, Z))
afst(X1, X2) -> fst(X1, X2)
afrom(X) -> cons(mark(X), from(s(X)))
afrom(X) -> from(X)
alen(nil) -> 0
alen(cons(X, Z)) -> s(len(Z))
alen(X) -> len(X)
mark(fst(X1, X2)) -> afst(mark(X1), mark(X2))
mark(from(X)) -> afrom(mark(X))
mark(len(X)) -> alen(mark(X))
mark(0) -> 0
mark(s(X)) -> s(X)
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)

Strategy:

innermost

Using the Dependency Graph the DP problem was split into 1 DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`           →DP Problem 2`
`             ↳Polo`
`             ...`
`               →DP Problem 8`
`                 ↳Polynomial Ordering`

Dependency Pairs:

MARK(fst(X1, X2)) -> MARK(X2)
MARK(fst(X1, X2)) -> MARK(X1)

Rules:

afst(0, Z) -> nil
afst(s(X), cons(Y, Z)) -> cons(mark(Y), fst(X, Z))
afst(X1, X2) -> fst(X1, X2)
afrom(X) -> cons(mark(X), from(s(X)))
afrom(X) -> from(X)
alen(nil) -> 0
alen(cons(X, Z)) -> s(len(Z))
alen(X) -> len(X)
mark(fst(X1, X2)) -> afst(mark(X1), mark(X2))
mark(from(X)) -> afrom(mark(X))
mark(len(X)) -> alen(mark(X))
mark(0) -> 0
mark(s(X)) -> s(X)
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)

Strategy:

innermost

The following dependency pairs can be strictly oriented:

MARK(fst(X1, X2)) -> MARK(X2)
MARK(fst(X1, X2)) -> MARK(X1)

There are no usable rules for innermost w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(MARK(x1)) =  x1 POL(fst(x1, x2)) =  1 + x1 + x2

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`           →DP Problem 2`
`             ↳Polo`
`             ...`
`               →DP Problem 9`
`                 ↳Dependency Graph`

Dependency Pair:

Rules:

afst(0, Z) -> nil
afst(s(X), cons(Y, Z)) -> cons(mark(Y), fst(X, Z))
afst(X1, X2) -> fst(X1, X2)
afrom(X) -> cons(mark(X), from(s(X)))
afrom(X) -> from(X)
alen(nil) -> 0
alen(cons(X, Z)) -> s(len(Z))
alen(X) -> len(X)
mark(fst(X1, X2)) -> afst(mark(X1), mark(X2))
mark(from(X)) -> afrom(mark(X))
mark(len(X)) -> alen(mark(X))
mark(0) -> 0
mark(s(X)) -> s(X)
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:06 minutes