Term Rewriting System R:
[Z, X, Y, X1, X2]
afst(0, Z) -> nil
afst(s(X), cons(Y, Z)) -> cons(mark(Y), fst(X, Z))
afst(X1, X2) -> fst(X1, X2)
afrom(X) -> cons(mark(X), from(s(X)))
afrom(X) -> from(X)
alen(nil) -> 0
alen(cons(X, Z)) -> s(len(Z))
alen(X) -> len(X)
mark(fst(X1, X2)) -> afst(mark(X1), mark(X2))
mark(from(X)) -> afrom(mark(X))
mark(len(X)) -> alen(mark(X))
mark(0) -> 0
mark(s(X)) -> s(X)
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)

Innermost Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

AFST(s(X), cons(Y, Z)) -> MARK(Y)
AFROM(X) -> MARK(X)
MARK(fst(X1, X2)) -> AFST(mark(X1), mark(X2))
MARK(fst(X1, X2)) -> MARK(X1)
MARK(fst(X1, X2)) -> MARK(X2)
MARK(from(X)) -> AFROM(mark(X))
MARK(from(X)) -> MARK(X)
MARK(len(X)) -> ALEN(mark(X))
MARK(len(X)) -> MARK(X)
MARK(cons(X1, X2)) -> MARK(X1)

Furthermore, R contains one SCC.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Remaining Obligation(s)`

The following remains to be proven:
Dependency Pairs:

MARK(cons(X1, X2)) -> MARK(X1)
MARK(len(X)) -> MARK(X)
MARK(from(X)) -> MARK(X)
AFROM(X) -> MARK(X)
MARK(from(X)) -> AFROM(mark(X))
MARK(fst(X1, X2)) -> MARK(X2)
MARK(fst(X1, X2)) -> MARK(X1)
MARK(fst(X1, X2)) -> AFST(mark(X1), mark(X2))
AFST(s(X), cons(Y, Z)) -> MARK(Y)

Rules:

afst(0, Z) -> nil
afst(s(X), cons(Y, Z)) -> cons(mark(Y), fst(X, Z))
afst(X1, X2) -> fst(X1, X2)
afrom(X) -> cons(mark(X), from(s(X)))
afrom(X) -> from(X)
alen(nil) -> 0
alen(cons(X, Z)) -> s(len(Z))
alen(X) -> len(X)
mark(fst(X1, X2)) -> afst(mark(X1), mark(X2))
mark(from(X)) -> afrom(mark(X))
mark(len(X)) -> alen(mark(X))
mark(0) -> 0
mark(s(X)) -> s(X)
mark(nil) -> nil
mark(cons(X1, X2)) -> cons(mark(X1), X2)

Strategy:

innermost

Innermost Termination of R could not be shown.
Duration:
0:01 minutes