R
↳Removing Redundant Rules for Innermost Termination
fst(s(X), cons(Y, Z)) -> cons(Y, nfst(activate(X), activate(Z)))
add(s(X), Y) -> s(nadd(activate(X), Y))
R
↳RRRI
→TRS2
↳Dependency Pair Analysis
LEN(cons(X, Z)) -> S(nlen(activate(Z)))
LEN(cons(X, Z)) -> ACTIVATE(Z)
ACTIVATE(nfst(X1, X2)) -> FST(activate(X1), activate(X2))
ACTIVATE(nfst(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(nfst(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nfrom(X)) -> FROM(activate(X))
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
ACTIVATE(ns(X)) -> S(X)
ACTIVATE(nadd(X1, X2)) -> ADD(activate(X1), activate(X2))
ACTIVATE(nadd(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(nadd(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nlen(X)) -> LEN(activate(X))
ACTIVATE(nlen(X)) -> ACTIVATE(X)
R
↳RRRI
→TRS2
↳DPs
→DP Problem 1
↳Negative Polynomial Order
ACTIVATE(nlen(X)) -> ACTIVATE(X)
ACTIVATE(nlen(X)) -> LEN(activate(X))
ACTIVATE(nadd(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nadd(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
ACTIVATE(nfst(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nfst(X1, X2)) -> ACTIVATE(X1)
LEN(cons(X, Z)) -> ACTIVATE(Z)
fst(0, Z) -> nil
fst(X1, X2) -> nfst(X1, X2)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
add(0, X) -> X
add(X1, X2) -> nadd(X1, X2)
len(nil) -> 0
len(cons(X, Z)) -> s(nlen(activate(Z)))
len(X) -> nlen(X)
s(X) -> ns(X)
activate(nfst(X1, X2)) -> fst(activate(X1), activate(X2))
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(X)
activate(nadd(X1, X2)) -> add(activate(X1), activate(X2))
activate(nlen(X)) -> len(activate(X))
activate(X) -> X
ACTIVATE(nlen(X)) -> ACTIVATE(X)
ACTIVATE(nlen(X)) -> LEN(activate(X))
activate(nfst(X1, X2)) -> fst(activate(X1), activate(X2))
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(X)
activate(nadd(X1, X2)) -> add(activate(X1), activate(X2))
activate(nlen(X)) -> len(activate(X))
activate(X) -> X
fst(0, Z) -> nil
fst(X1, X2) -> nfst(X1, X2)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
s(X) -> ns(X)
add(0, X) -> X
add(X1, X2) -> nadd(X1, X2)
len(nil) -> 0
len(cons(X, Z)) -> s(nlen(activate(Z)))
len(X) -> nlen(X)
POL( ACTIVATE(x1) ) = x1
POL( nlen(x1) ) = x1 + 1
POL( nfst(x1, x2) ) = x1 + x2
POL( LEN(x1) ) = x1
POL( activate(x1) ) = x1
POL( nadd(x1, x2) ) = x1 + x2
POL( cons(x1, x2) ) = x2
POL( nfrom(x1) ) = x1
POL( fst(x1, x2) ) = x1 + x2
POL( from(x1) ) = x1
POL( ns(x1) ) = 0
POL( s(x1) ) = 0
POL( add(x1, x2) ) = x1 + x2
POL( len(x1) ) = x1 + 1
POL( 0 ) = 0
POL( nil ) = 0
R
↳RRRI
→TRS2
↳DPs
→DP Problem 1
↳Neg POLO
...
→DP Problem 2
↳Dependency Graph
ACTIVATE(nadd(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nadd(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
ACTIVATE(nfst(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nfst(X1, X2)) -> ACTIVATE(X1)
LEN(cons(X, Z)) -> ACTIVATE(Z)
fst(0, Z) -> nil
fst(X1, X2) -> nfst(X1, X2)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
add(0, X) -> X
add(X1, X2) -> nadd(X1, X2)
len(nil) -> 0
len(cons(X, Z)) -> s(nlen(activate(Z)))
len(X) -> nlen(X)
s(X) -> ns(X)
activate(nfst(X1, X2)) -> fst(activate(X1), activate(X2))
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(X)
activate(nadd(X1, X2)) -> add(activate(X1), activate(X2))
activate(nlen(X)) -> len(activate(X))
activate(X) -> X
R
↳RRRI
→TRS2
↳DPs
→DP Problem 1
↳Neg POLO
...
→DP Problem 3
↳Size-Change Principle
ACTIVATE(nadd(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
ACTIVATE(nfst(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nfst(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(nadd(X1, X2)) -> ACTIVATE(X2)
fst(0, Z) -> nil
fst(X1, X2) -> nfst(X1, X2)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
add(0, X) -> X
add(X1, X2) -> nadd(X1, X2)
len(nil) -> 0
len(cons(X, Z)) -> s(nlen(activate(Z)))
len(X) -> nlen(X)
s(X) -> ns(X)
activate(nfst(X1, X2)) -> fst(activate(X1), activate(X2))
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(X)
activate(nadd(X1, X2)) -> add(activate(X1), activate(X2))
activate(nlen(X)) -> len(activate(X))
activate(X) -> X
|
|
trivial
nfrom(x1) -> nfrom(x1)
nfst(x1, x2) -> nfst(x1, x2)
nadd(x1, x2) -> nadd(x1, x2)