R
↳Dependency Pair Analysis
FST(s(X), cons(Y, Z)) -> ACTIVATE(X)
FST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
ADD(s(X), Y) -> S(nadd(activate(X), Y))
ADD(s(X), Y) -> ACTIVATE(X)
LEN(cons(X, Z)) -> S(nlen(activate(Z)))
LEN(cons(X, Z)) -> ACTIVATE(Z)
ACTIVATE(nfst(X1, X2)) -> FST(activate(X1), activate(X2))
ACTIVATE(nfst(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(nfst(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nfrom(X)) -> FROM(activate(X))
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
ACTIVATE(ns(X)) -> S(X)
ACTIVATE(nadd(X1, X2)) -> ADD(activate(X1), activate(X2))
ACTIVATE(nadd(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(nadd(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nlen(X)) -> LEN(activate(X))
ACTIVATE(nlen(X)) -> ACTIVATE(X)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
ACTIVATE(nlen(X)) -> ACTIVATE(X)
ACTIVATE(nlen(X)) -> LEN(activate(X))
ACTIVATE(nadd(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nadd(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
ACTIVATE(nfst(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nfst(X1, X2)) -> ACTIVATE(X1)
LEN(cons(X, Z)) -> ACTIVATE(Z)
fst(0, Z) -> nil
fst(s(X), cons(Y, Z)) -> cons(Y, nfst(activate(X), activate(Z)))
fst(X1, X2) -> nfst(X1, X2)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
add(0, X) -> X
add(s(X), Y) -> s(nadd(activate(X), Y))
add(X1, X2) -> nadd(X1, X2)
len(nil) -> 0
len(cons(X, Z)) -> s(nlen(activate(Z)))
len(X) -> nlen(X)
s(X) -> ns(X)
activate(nfst(X1, X2)) -> fst(activate(X1), activate(X2))
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(X)
activate(nadd(X1, X2)) -> add(activate(X1), activate(X2))
activate(nlen(X)) -> len(activate(X))
activate(X) -> X
innermost
ACTIVATE(nlen(X)) -> ACTIVATE(X)
ACTIVATE(nlen(X)) -> LEN(activate(X))
activate(nfst(X1, X2)) -> fst(activate(X1), activate(X2))
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(X)
activate(nadd(X1, X2)) -> add(activate(X1), activate(X2))
activate(nlen(X)) -> len(activate(X))
activate(X) -> X
len(nil) -> 0
len(cons(X, Z)) -> s(nlen(activate(Z)))
len(X) -> nlen(X)
fst(0, Z) -> nil
fst(s(X), cons(Y, Z)) -> cons(Y, nfst(activate(X), activate(Z)))
fst(X1, X2) -> nfst(X1, X2)
add(0, X) -> X
add(s(X), Y) -> s(nadd(activate(X), Y))
add(X1, X2) -> nadd(X1, X2)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
s(X) -> ns(X)
POL(from(x1)) = x1 POL(activate(x1)) = x1 POL(len(x1)) = 1 + x1 POL(n__fst(x1, x2)) = x1 + x2 POL(LEN(x1)) = x1 POL(n__s(x1)) = x1 POL(ACTIVATE(x1)) = x1 POL(add(x1, x2)) = x1 + x2 POL(n__from(x1)) = x1 POL(0) = 0 POL(cons(x1, x2)) = x2 POL(nil) = 0 POL(s(x1)) = x1 POL(fst(x1, x2)) = x1 + x2 POL(n__len(x1)) = 1 + x1 POL(n__add(x1, x2)) = x1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Dependency Graph
ACTIVATE(nadd(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nadd(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
ACTIVATE(nfst(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nfst(X1, X2)) -> ACTIVATE(X1)
LEN(cons(X, Z)) -> ACTIVATE(Z)
fst(0, Z) -> nil
fst(s(X), cons(Y, Z)) -> cons(Y, nfst(activate(X), activate(Z)))
fst(X1, X2) -> nfst(X1, X2)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
add(0, X) -> X
add(s(X), Y) -> s(nadd(activate(X), Y))
add(X1, X2) -> nadd(X1, X2)
len(nil) -> 0
len(cons(X, Z)) -> s(nlen(activate(Z)))
len(X) -> nlen(X)
s(X) -> ns(X)
activate(nfst(X1, X2)) -> fst(activate(X1), activate(X2))
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(X)
activate(nadd(X1, X2)) -> add(activate(X1), activate(X2))
activate(nlen(X)) -> len(activate(X))
activate(X) -> X
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 3
↳Polynomial Ordering
ACTIVATE(nadd(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
ACTIVATE(nfst(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nfst(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(nadd(X1, X2)) -> ACTIVATE(X2)
fst(0, Z) -> nil
fst(s(X), cons(Y, Z)) -> cons(Y, nfst(activate(X), activate(Z)))
fst(X1, X2) -> nfst(X1, X2)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
add(0, X) -> X
add(s(X), Y) -> s(nadd(activate(X), Y))
add(X1, X2) -> nadd(X1, X2)
len(nil) -> 0
len(cons(X, Z)) -> s(nlen(activate(Z)))
len(X) -> nlen(X)
s(X) -> ns(X)
activate(nfst(X1, X2)) -> fst(activate(X1), activate(X2))
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(X)
activate(nadd(X1, X2)) -> add(activate(X1), activate(X2))
activate(nlen(X)) -> len(activate(X))
activate(X) -> X
innermost
ACTIVATE(nadd(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(nadd(X1, X2)) -> ACTIVATE(X2)
POL(n__from(x1)) = x1 POL(n__fst(x1, x2)) = x1 + x2 POL(ACTIVATE(x1)) = x1 POL(n__add(x1, x2)) = 1 + x1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 4
↳Polynomial Ordering
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
ACTIVATE(nfst(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nfst(X1, X2)) -> ACTIVATE(X1)
fst(0, Z) -> nil
fst(s(X), cons(Y, Z)) -> cons(Y, nfst(activate(X), activate(Z)))
fst(X1, X2) -> nfst(X1, X2)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
add(0, X) -> X
add(s(X), Y) -> s(nadd(activate(X), Y))
add(X1, X2) -> nadd(X1, X2)
len(nil) -> 0
len(cons(X, Z)) -> s(nlen(activate(Z)))
len(X) -> nlen(X)
s(X) -> ns(X)
activate(nfst(X1, X2)) -> fst(activate(X1), activate(X2))
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(X)
activate(nadd(X1, X2)) -> add(activate(X1), activate(X2))
activate(nlen(X)) -> len(activate(X))
activate(X) -> X
innermost
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
POL(n__from(x1)) = 1 + x1 POL(n__fst(x1, x2)) = x1 + x2 POL(ACTIVATE(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 5
↳Polynomial Ordering
ACTIVATE(nfst(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nfst(X1, X2)) -> ACTIVATE(X1)
fst(0, Z) -> nil
fst(s(X), cons(Y, Z)) -> cons(Y, nfst(activate(X), activate(Z)))
fst(X1, X2) -> nfst(X1, X2)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
add(0, X) -> X
add(s(X), Y) -> s(nadd(activate(X), Y))
add(X1, X2) -> nadd(X1, X2)
len(nil) -> 0
len(cons(X, Z)) -> s(nlen(activate(Z)))
len(X) -> nlen(X)
s(X) -> ns(X)
activate(nfst(X1, X2)) -> fst(activate(X1), activate(X2))
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(X)
activate(nadd(X1, X2)) -> add(activate(X1), activate(X2))
activate(nlen(X)) -> len(activate(X))
activate(X) -> X
innermost
ACTIVATE(nfst(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nfst(X1, X2)) -> ACTIVATE(X1)
POL(n__fst(x1, x2)) = 1 + x1 + x2 POL(ACTIVATE(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 6
↳Dependency Graph
fst(0, Z) -> nil
fst(s(X), cons(Y, Z)) -> cons(Y, nfst(activate(X), activate(Z)))
fst(X1, X2) -> nfst(X1, X2)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
add(0, X) -> X
add(s(X), Y) -> s(nadd(activate(X), Y))
add(X1, X2) -> nadd(X1, X2)
len(nil) -> 0
len(cons(X, Z)) -> s(nlen(activate(Z)))
len(X) -> nlen(X)
s(X) -> ns(X)
activate(nfst(X1, X2)) -> fst(activate(X1), activate(X2))
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(X)
activate(nadd(X1, X2)) -> add(activate(X1), activate(X2))
activate(nlen(X)) -> len(activate(X))
activate(X) -> X
innermost