R
↳Dependency Pair Analysis
ACTIVE(fst(s(X), cons(Y, Z))) -> CONS(Y, fst(X, Z))
ACTIVE(fst(s(X), cons(Y, Z))) -> FST(X, Z)
ACTIVE(from(X)) -> CONS(X, from(s(X)))
ACTIVE(from(X)) -> FROM(s(X))
ACTIVE(from(X)) -> S(X)
ACTIVE(add(s(X), Y)) -> S(add(X, Y))
ACTIVE(add(s(X), Y)) -> ADD(X, Y)
ACTIVE(len(cons(X, Z))) -> S(len(Z))
ACTIVE(len(cons(X, Z))) -> LEN(Z)
ACTIVE(cons(X1, X2)) -> CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(fst(X1, X2)) -> FST(active(X1), X2)
ACTIVE(fst(X1, X2)) -> ACTIVE(X1)
ACTIVE(fst(X1, X2)) -> FST(X1, active(X2))
ACTIVE(fst(X1, X2)) -> ACTIVE(X2)
ACTIVE(from(X)) -> FROM(active(X))
ACTIVE(from(X)) -> ACTIVE(X)
ACTIVE(add(X1, X2)) -> ADD(active(X1), X2)
ACTIVE(add(X1, X2)) -> ACTIVE(X1)
ACTIVE(add(X1, X2)) -> ADD(X1, active(X2))
ACTIVE(add(X1, X2)) -> ACTIVE(X2)
ACTIVE(len(X)) -> LEN(active(X))
ACTIVE(len(X)) -> ACTIVE(X)
CONS(mark(X1), X2) -> CONS(X1, X2)
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
FST(mark(X1), X2) -> FST(X1, X2)
FST(X1, mark(X2)) -> FST(X1, X2)
FST(ok(X1), ok(X2)) -> FST(X1, X2)
FROM(mark(X)) -> FROM(X)
FROM(ok(X)) -> FROM(X)
ADD(mark(X1), X2) -> ADD(X1, X2)
ADD(X1, mark(X2)) -> ADD(X1, X2)
ADD(ok(X1), ok(X2)) -> ADD(X1, X2)
LEN(mark(X)) -> LEN(X)
LEN(ok(X)) -> LEN(X)
PROPER(s(X)) -> S(proper(X))
PROPER(s(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(fst(X1, X2)) -> FST(proper(X1), proper(X2))
PROPER(fst(X1, X2)) -> PROPER(X1)
PROPER(fst(X1, X2)) -> PROPER(X2)
PROPER(from(X)) -> FROM(proper(X))
PROPER(from(X)) -> PROPER(X)
PROPER(add(X1, X2)) -> ADD(proper(X1), proper(X2))
PROPER(add(X1, X2)) -> PROPER(X1)
PROPER(add(X1, X2)) -> PROPER(X2)
PROPER(len(X)) -> LEN(proper(X))
PROPER(len(X)) -> PROPER(X)
S(ok(X)) -> S(X)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)
R
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
CONS(mark(X1), X2) -> CONS(X1, X2)
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
active(fst(0, Z)) -> mark(nil)
active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(len(nil)) -> mark(0)
active(len(cons(X, Z))) -> mark(s(len(Z)))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(fst(X1, X2)) -> fst(active(X1), X2)
active(fst(X1, X2)) -> fst(X1, active(X2))
active(from(X)) -> from(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(len(X)) -> len(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
fst(mark(X1), X2) -> mark(fst(X1, X2))
fst(X1, mark(X2)) -> mark(fst(X1, X2))
fst(ok(X1), ok(X2)) -> ok(fst(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
len(mark(X)) -> mark(len(X))
len(ok(X)) -> ok(len(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(fst(X1, X2)) -> fst(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(len(X)) -> len(proper(X))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 10
↳Size-Change Principle
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
CONS(mark(X1), X2) -> CONS(X1, X2)
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
none
innermost
|
|
|
|
trivial
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Usable Rules (Innermost)
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
FST(ok(X1), ok(X2)) -> FST(X1, X2)
FST(X1, mark(X2)) -> FST(X1, X2)
FST(mark(X1), X2) -> FST(X1, X2)
active(fst(0, Z)) -> mark(nil)
active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(len(nil)) -> mark(0)
active(len(cons(X, Z))) -> mark(s(len(Z)))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(fst(X1, X2)) -> fst(active(X1), X2)
active(fst(X1, X2)) -> fst(X1, active(X2))
active(from(X)) -> from(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(len(X)) -> len(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
fst(mark(X1), X2) -> mark(fst(X1, X2))
fst(X1, mark(X2)) -> mark(fst(X1, X2))
fst(ok(X1), ok(X2)) -> ok(fst(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
len(mark(X)) -> mark(len(X))
len(ok(X)) -> ok(len(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(fst(X1, X2)) -> fst(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(len(X)) -> len(proper(X))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 11
↳Size-Change Principle
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
FST(ok(X1), ok(X2)) -> FST(X1, X2)
FST(X1, mark(X2)) -> FST(X1, X2)
FST(mark(X1), X2) -> FST(X1, X2)
none
innermost
|
|
|
|
|
|
trivial
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳Usable Rules (Innermost)
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
S(ok(X)) -> S(X)
active(fst(0, Z)) -> mark(nil)
active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(len(nil)) -> mark(0)
active(len(cons(X, Z))) -> mark(s(len(Z)))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(fst(X1, X2)) -> fst(active(X1), X2)
active(fst(X1, X2)) -> fst(X1, active(X2))
active(from(X)) -> from(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(len(X)) -> len(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
fst(mark(X1), X2) -> mark(fst(X1, X2))
fst(X1, mark(X2)) -> mark(fst(X1, X2))
fst(ok(X1), ok(X2)) -> ok(fst(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
len(mark(X)) -> mark(len(X))
len(ok(X)) -> ok(len(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(fst(X1, X2)) -> fst(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(len(X)) -> len(proper(X))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 12
↳Size-Change Principle
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
S(ok(X)) -> S(X)
none
innermost
|
|
trivial
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳Usable Rules (Innermost)
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
ADD(ok(X1), ok(X2)) -> ADD(X1, X2)
ADD(X1, mark(X2)) -> ADD(X1, X2)
ADD(mark(X1), X2) -> ADD(X1, X2)
active(fst(0, Z)) -> mark(nil)
active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(len(nil)) -> mark(0)
active(len(cons(X, Z))) -> mark(s(len(Z)))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(fst(X1, X2)) -> fst(active(X1), X2)
active(fst(X1, X2)) -> fst(X1, active(X2))
active(from(X)) -> from(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(len(X)) -> len(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
fst(mark(X1), X2) -> mark(fst(X1, X2))
fst(X1, mark(X2)) -> mark(fst(X1, X2))
fst(ok(X1), ok(X2)) -> ok(fst(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
len(mark(X)) -> mark(len(X))
len(ok(X)) -> ok(len(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(fst(X1, X2)) -> fst(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(len(X)) -> len(proper(X))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 13
↳Size-Change Principle
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
ADD(ok(X1), ok(X2)) -> ADD(X1, X2)
ADD(X1, mark(X2)) -> ADD(X1, X2)
ADD(mark(X1), X2) -> ADD(X1, X2)
none
innermost
|
|
|
|
|
|
trivial
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳Usable Rules (Innermost)
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
LEN(ok(X)) -> LEN(X)
LEN(mark(X)) -> LEN(X)
active(fst(0, Z)) -> mark(nil)
active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(len(nil)) -> mark(0)
active(len(cons(X, Z))) -> mark(s(len(Z)))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(fst(X1, X2)) -> fst(active(X1), X2)
active(fst(X1, X2)) -> fst(X1, active(X2))
active(from(X)) -> from(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(len(X)) -> len(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
fst(mark(X1), X2) -> mark(fst(X1, X2))
fst(X1, mark(X2)) -> mark(fst(X1, X2))
fst(ok(X1), ok(X2)) -> ok(fst(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
len(mark(X)) -> mark(len(X))
len(ok(X)) -> ok(len(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(fst(X1, X2)) -> fst(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(len(X)) -> len(proper(X))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 14
↳Size-Change Principle
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
LEN(ok(X)) -> LEN(X)
LEN(mark(X)) -> LEN(X)
none
innermost
|
|
trivial
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳Usable Rules (Innermost)
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
FROM(ok(X)) -> FROM(X)
FROM(mark(X)) -> FROM(X)
active(fst(0, Z)) -> mark(nil)
active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(len(nil)) -> mark(0)
active(len(cons(X, Z))) -> mark(s(len(Z)))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(fst(X1, X2)) -> fst(active(X1), X2)
active(fst(X1, X2)) -> fst(X1, active(X2))
active(from(X)) -> from(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(len(X)) -> len(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
fst(mark(X1), X2) -> mark(fst(X1, X2))
fst(X1, mark(X2)) -> mark(fst(X1, X2))
fst(ok(X1), ok(X2)) -> ok(fst(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
len(mark(X)) -> mark(len(X))
len(ok(X)) -> ok(len(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(fst(X1, X2)) -> fst(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(len(X)) -> len(proper(X))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 15
↳Size-Change Principle
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
FROM(ok(X)) -> FROM(X)
FROM(mark(X)) -> FROM(X)
none
innermost
|
|
trivial
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳Usable Rules (Innermost)
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
ACTIVE(len(X)) -> ACTIVE(X)
ACTIVE(add(X1, X2)) -> ACTIVE(X2)
ACTIVE(add(X1, X2)) -> ACTIVE(X1)
ACTIVE(from(X)) -> ACTIVE(X)
ACTIVE(fst(X1, X2)) -> ACTIVE(X2)
ACTIVE(fst(X1, X2)) -> ACTIVE(X1)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
active(fst(0, Z)) -> mark(nil)
active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(len(nil)) -> mark(0)
active(len(cons(X, Z))) -> mark(s(len(Z)))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(fst(X1, X2)) -> fst(active(X1), X2)
active(fst(X1, X2)) -> fst(X1, active(X2))
active(from(X)) -> from(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(len(X)) -> len(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
fst(mark(X1), X2) -> mark(fst(X1, X2))
fst(X1, mark(X2)) -> mark(fst(X1, X2))
fst(ok(X1), ok(X2)) -> ok(fst(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
len(mark(X)) -> mark(len(X))
len(ok(X)) -> ok(len(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(fst(X1, X2)) -> fst(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(len(X)) -> len(proper(X))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 16
↳Size-Change Principle
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
ACTIVE(len(X)) -> ACTIVE(X)
ACTIVE(add(X1, X2)) -> ACTIVE(X2)
ACTIVE(add(X1, X2)) -> ACTIVE(X1)
ACTIVE(from(X)) -> ACTIVE(X)
ACTIVE(fst(X1, X2)) -> ACTIVE(X2)
ACTIVE(fst(X1, X2)) -> ACTIVE(X1)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
none
innermost
|
|
trivial
from(x1) -> from(x1)
len(x1) -> len(x1)
cons(x1, x2) -> cons(x1, x2)
fst(x1, x2) -> fst(x1, x2)
add(x1, x2) -> add(x1, x2)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳Usable Rules (Innermost)
→DP Problem 9
↳UsableRules
PROPER(len(X)) -> PROPER(X)
PROPER(add(X1, X2)) -> PROPER(X2)
PROPER(add(X1, X2)) -> PROPER(X1)
PROPER(from(X)) -> PROPER(X)
PROPER(fst(X1, X2)) -> PROPER(X2)
PROPER(fst(X1, X2)) -> PROPER(X1)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(s(X)) -> PROPER(X)
active(fst(0, Z)) -> mark(nil)
active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(len(nil)) -> mark(0)
active(len(cons(X, Z))) -> mark(s(len(Z)))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(fst(X1, X2)) -> fst(active(X1), X2)
active(fst(X1, X2)) -> fst(X1, active(X2))
active(from(X)) -> from(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(len(X)) -> len(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
fst(mark(X1), X2) -> mark(fst(X1, X2))
fst(X1, mark(X2)) -> mark(fst(X1, X2))
fst(ok(X1), ok(X2)) -> ok(fst(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
len(mark(X)) -> mark(len(X))
len(ok(X)) -> ok(len(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(fst(X1, X2)) -> fst(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(len(X)) -> len(proper(X))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 17
↳Size-Change Principle
→DP Problem 9
↳UsableRules
PROPER(len(X)) -> PROPER(X)
PROPER(add(X1, X2)) -> PROPER(X2)
PROPER(add(X1, X2)) -> PROPER(X1)
PROPER(from(X)) -> PROPER(X)
PROPER(fst(X1, X2)) -> PROPER(X2)
PROPER(fst(X1, X2)) -> PROPER(X1)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(s(X)) -> PROPER(X)
none
innermost
|
|
trivial
from(x1) -> from(x1)
cons(x1, x2) -> cons(x1, x2)
len(x1) -> len(x1)
fst(x1, x2) -> fst(x1, x2)
s(x1) -> s(x1)
add(x1, x2) -> add(x1, x2)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳Usable Rules (Innermost)
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
active(fst(0, Z)) -> mark(nil)
active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(len(nil)) -> mark(0)
active(len(cons(X, Z))) -> mark(s(len(Z)))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(fst(X1, X2)) -> fst(active(X1), X2)
active(fst(X1, X2)) -> fst(X1, active(X2))
active(from(X)) -> from(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(len(X)) -> len(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
fst(mark(X1), X2) -> mark(fst(X1, X2))
fst(X1, mark(X2)) -> mark(fst(X1, X2))
fst(ok(X1), ok(X2)) -> ok(fst(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
len(mark(X)) -> mark(len(X))
len(ok(X)) -> ok(len(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(fst(X1, X2)) -> fst(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(len(X)) -> len(proper(X))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
→DP Problem 18
↳Negative Polynomial Order
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(add(X1, X2)) -> add(active(X1), X2)
active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z)))
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(fst(X1, X2)) -> fst(active(X1), X2)
active(len(cons(X, Z))) -> mark(s(len(Z)))
active(len(X)) -> len(active(X))
active(add(0, X)) -> mark(X)
active(from(X)) -> from(active(X))
active(fst(X1, X2)) -> fst(X1, active(X2))
active(len(nil)) -> mark(0)
active(fst(0, Z)) -> mark(nil)
active(from(X)) -> mark(cons(X, from(s(X))))
active(add(X1, X2)) -> add(X1, active(X2))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
fst(ok(X1), ok(X2)) -> ok(fst(X1, X2))
fst(mark(X1), X2) -> mark(fst(X1, X2))
fst(X1, mark(X2)) -> mark(fst(X1, X2))
s(ok(X)) -> ok(s(X))
len(ok(X)) -> ok(len(X))
len(mark(X)) -> mark(len(X))
proper(len(X)) -> len(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(s(X)) -> s(proper(X))
proper(fst(X1, X2)) -> fst(proper(X1), proper(X2))
proper(0) -> ok(0)
innermost
TOP(mark(X)) -> TOP(proper(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(add(X1, X2)) -> add(active(X1), X2)
active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z)))
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(fst(X1, X2)) -> fst(active(X1), X2)
active(len(cons(X, Z))) -> mark(s(len(Z)))
active(len(X)) -> len(active(X))
active(add(0, X)) -> mark(X)
active(from(X)) -> from(active(X))
active(fst(X1, X2)) -> fst(X1, active(X2))
active(len(nil)) -> mark(0)
active(fst(0, Z)) -> mark(nil)
active(from(X)) -> mark(cons(X, from(s(X))))
active(add(X1, X2)) -> add(X1, active(X2))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
fst(ok(X1), ok(X2)) -> ok(fst(X1, X2))
fst(mark(X1), X2) -> mark(fst(X1, X2))
fst(X1, mark(X2)) -> mark(fst(X1, X2))
s(ok(X)) -> ok(s(X))
len(ok(X)) -> ok(len(X))
len(mark(X)) -> mark(len(X))
proper(len(X)) -> len(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(s(X)) -> s(proper(X))
proper(fst(X1, X2)) -> fst(proper(X1), proper(X2))
proper(0) -> ok(0)
POL( TOP(x1) ) = x1
POL( mark(x1) ) = x1 + 1
POL( proper(x1) ) = x1
POL( ok(x1) ) = x1
POL( active(x1) ) = x1
POL( cons(x1, x2) ) = x1
POL( add(x1, x2) ) = x1 + x2 + 1
POL( fst(x1, x2) ) = x1 + x2 + 1
POL( s(x1) ) = 0
POL( len(x1) ) = x1 + 1
POL( from(x1) ) = x1 + 1
POL( nil ) = 0
POL( 0 ) = 0
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
→DP Problem 18
↳Neg POLO
...
→DP Problem 19
↳Usable Rules (Innermost)
TOP(ok(X)) -> TOP(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(add(X1, X2)) -> add(active(X1), X2)
active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z)))
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(fst(X1, X2)) -> fst(active(X1), X2)
active(len(cons(X, Z))) -> mark(s(len(Z)))
active(len(X)) -> len(active(X))
active(add(0, X)) -> mark(X)
active(from(X)) -> from(active(X))
active(fst(X1, X2)) -> fst(X1, active(X2))
active(len(nil)) -> mark(0)
active(fst(0, Z)) -> mark(nil)
active(from(X)) -> mark(cons(X, from(s(X))))
active(add(X1, X2)) -> add(X1, active(X2))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
fst(ok(X1), ok(X2)) -> ok(fst(X1, X2))
fst(mark(X1), X2) -> mark(fst(X1, X2))
fst(X1, mark(X2)) -> mark(fst(X1, X2))
s(ok(X)) -> ok(s(X))
len(ok(X)) -> ok(len(X))
len(mark(X)) -> mark(len(X))
proper(len(X)) -> len(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(s(X)) -> s(proper(X))
proper(fst(X1, X2)) -> fst(proper(X1), proper(X2))
proper(0) -> ok(0)
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
→DP Problem 18
↳Neg POLO
...
→DP Problem 20
↳Negative Polynomial Order
TOP(ok(X)) -> TOP(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(add(X1, X2)) -> add(active(X1), X2)
active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z)))
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(fst(X1, X2)) -> fst(active(X1), X2)
active(len(cons(X, Z))) -> mark(s(len(Z)))
active(len(X)) -> len(active(X))
active(add(0, X)) -> mark(X)
active(from(X)) -> from(active(X))
active(fst(X1, X2)) -> fst(X1, active(X2))
active(len(nil)) -> mark(0)
active(fst(0, Z)) -> mark(nil)
active(from(X)) -> mark(cons(X, from(s(X))))
active(add(X1, X2)) -> add(X1, active(X2))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
fst(ok(X1), ok(X2)) -> ok(fst(X1, X2))
fst(mark(X1), X2) -> mark(fst(X1, X2))
fst(X1, mark(X2)) -> mark(fst(X1, X2))
s(ok(X)) -> ok(s(X))
len(mark(X)) -> mark(len(X))
len(ok(X)) -> ok(len(X))
innermost
TOP(ok(X)) -> TOP(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(add(X1, X2)) -> add(active(X1), X2)
active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z)))
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(fst(X1, X2)) -> fst(active(X1), X2)
active(len(cons(X, Z))) -> mark(s(len(Z)))
active(len(X)) -> len(active(X))
active(add(0, X)) -> mark(X)
active(from(X)) -> from(active(X))
active(fst(X1, X2)) -> fst(X1, active(X2))
active(len(nil)) -> mark(0)
active(fst(0, Z)) -> mark(nil)
active(from(X)) -> mark(cons(X, from(s(X))))
active(add(X1, X2)) -> add(X1, active(X2))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
fst(ok(X1), ok(X2)) -> ok(fst(X1, X2))
fst(mark(X1), X2) -> mark(fst(X1, X2))
fst(X1, mark(X2)) -> mark(fst(X1, X2))
s(ok(X)) -> ok(s(X))
len(mark(X)) -> mark(len(X))
len(ok(X)) -> ok(len(X))
POL( TOP(x1) ) = x1
POL( ok(x1) ) = x1 + 1
POL( active(x1) ) = x1
POL( cons(x1, x2) ) = x2
POL( add(x1, x2) ) = x2
POL( fst(x1, x2) ) = x2
POL( mark(x1) ) = 0
POL( len(x1) ) = x1
POL( from(x1) ) = x1
POL( s(x1) ) = x1
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
→DP Problem 18
↳Neg POLO
...
→DP Problem 21
↳Dependency Graph
active(cons(X1, X2)) -> cons(active(X1), X2)
active(add(X1, X2)) -> add(active(X1), X2)
active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z)))
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(fst(X1, X2)) -> fst(active(X1), X2)
active(len(cons(X, Z))) -> mark(s(len(Z)))
active(len(X)) -> len(active(X))
active(add(0, X)) -> mark(X)
active(from(X)) -> from(active(X))
active(fst(X1, X2)) -> fst(X1, active(X2))
active(len(nil)) -> mark(0)
active(fst(0, Z)) -> mark(nil)
active(from(X)) -> mark(cons(X, from(s(X))))
active(add(X1, X2)) -> add(X1, active(X2))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
fst(ok(X1), ok(X2)) -> ok(fst(X1, X2))
fst(mark(X1), X2) -> mark(fst(X1, X2))
fst(X1, mark(X2)) -> mark(fst(X1, X2))
s(ok(X)) -> ok(s(X))
len(mark(X)) -> mark(len(X))
len(ok(X)) -> ok(len(X))
innermost