Term Rewriting System R:
[Z, X, Y, X1, X2]
active(fst(0, Z)) -> mark(nil)
active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(len(nil)) -> mark(0)
active(len(cons(X, Z))) -> mark(s(len(Z)))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(fst(X1, X2)) -> fst(active(X1), X2)
active(fst(X1, X2)) -> fst(X1, active(X2))
active(from(X)) -> from(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(len(X)) -> len(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
fst(mark(X1), X2) -> mark(fst(X1, X2))
fst(X1, mark(X2)) -> mark(fst(X1, X2))
fst(ok(X1), ok(X2)) -> ok(fst(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
len(mark(X)) -> mark(len(X))
len(ok(X)) -> ok(len(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(fst(X1, X2)) -> fst(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(len(X)) -> len(proper(X))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

ACTIVE(fst(s(X), cons(Y, Z))) -> CONS(Y, fst(X, Z))
ACTIVE(fst(s(X), cons(Y, Z))) -> FST(X, Z)
ACTIVE(from(X)) -> CONS(X, from(s(X)))
ACTIVE(from(X)) -> FROM(s(X))
ACTIVE(from(X)) -> S(X)
ACTIVE(add(s(X), Y)) -> S(add(X, Y))
ACTIVE(add(s(X), Y)) -> ADD(X, Y)
ACTIVE(len(cons(X, Z))) -> S(len(Z))
ACTIVE(len(cons(X, Z))) -> LEN(Z)
ACTIVE(cons(X1, X2)) -> CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(fst(X1, X2)) -> FST(active(X1), X2)
ACTIVE(fst(X1, X2)) -> ACTIVE(X1)
ACTIVE(fst(X1, X2)) -> FST(X1, active(X2))
ACTIVE(fst(X1, X2)) -> ACTIVE(X2)
ACTIVE(from(X)) -> FROM(active(X))
ACTIVE(from(X)) -> ACTIVE(X)
ACTIVE(add(X1, X2)) -> ADD(active(X1), X2)
ACTIVE(add(X1, X2)) -> ACTIVE(X1)
ACTIVE(add(X1, X2)) -> ADD(X1, active(X2))
ACTIVE(add(X1, X2)) -> ACTIVE(X2)
ACTIVE(len(X)) -> LEN(active(X))
ACTIVE(len(X)) -> ACTIVE(X)
CONS(mark(X1), X2) -> CONS(X1, X2)
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
FST(mark(X1), X2) -> FST(X1, X2)
FST(X1, mark(X2)) -> FST(X1, X2)
FST(ok(X1), ok(X2)) -> FST(X1, X2)
FROM(mark(X)) -> FROM(X)
FROM(ok(X)) -> FROM(X)
ADD(mark(X1), X2) -> ADD(X1, X2)
ADD(X1, mark(X2)) -> ADD(X1, X2)
ADD(ok(X1), ok(X2)) -> ADD(X1, X2)
LEN(mark(X)) -> LEN(X)
LEN(ok(X)) -> LEN(X)
PROPER(s(X)) -> S(proper(X))
PROPER(s(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(fst(X1, X2)) -> FST(proper(X1), proper(X2))
PROPER(fst(X1, X2)) -> PROPER(X1)
PROPER(fst(X1, X2)) -> PROPER(X2)
PROPER(from(X)) -> FROM(proper(X))
PROPER(from(X)) -> PROPER(X)
PROPER(add(X1, X2)) -> ADD(proper(X1), proper(X2))
PROPER(add(X1, X2)) -> PROPER(X1)
PROPER(add(X1, X2)) -> PROPER(X2)
PROPER(len(X)) -> LEN(proper(X))
PROPER(len(X)) -> PROPER(X)
S(ok(X)) -> S(X)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)

Furthermore, R contains nine SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
Remaining


Dependency Pairs:

CONS(mark(X1), X2) -> CONS(X1, X2)
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)


Rules:


active(fst(0, Z)) -> mark(nil)
active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(len(nil)) -> mark(0)
active(len(cons(X, Z))) -> mark(s(len(Z)))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(fst(X1, X2)) -> fst(active(X1), X2)
active(fst(X1, X2)) -> fst(X1, active(X2))
active(from(X)) -> from(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(len(X)) -> len(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
fst(mark(X1), X2) -> mark(fst(X1, X2))
fst(X1, mark(X2)) -> mark(fst(X1, X2))
fst(ok(X1), ok(X2)) -> ok(fst(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
len(mark(X)) -> mark(len(X))
len(ok(X)) -> ok(len(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(fst(X1, X2)) -> fst(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(len(X)) -> len(proper(X))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

CONS(mark(X1), X2) -> CONS(X1, X2)
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
CONS(x1, x2) -> CONS(x1, x2)
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 10
Dependency Graph
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
Remaining


Dependency Pair:


Rules:


active(fst(0, Z)) -> mark(nil)
active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(len(nil)) -> mark(0)
active(len(cons(X, Z))) -> mark(s(len(Z)))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(fst(X1, X2)) -> fst(active(X1), X2)
active(fst(X1, X2)) -> fst(X1, active(X2))
active(from(X)) -> from(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(len(X)) -> len(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
fst(mark(X1), X2) -> mark(fst(X1, X2))
fst(X1, mark(X2)) -> mark(fst(X1, X2))
fst(ok(X1), ok(X2)) -> ok(fst(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
len(mark(X)) -> mark(len(X))
len(ok(X)) -> ok(len(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(fst(X1, X2)) -> fst(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(len(X)) -> len(proper(X))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Argument Filtering and Ordering
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
Remaining


Dependency Pairs:

FST(ok(X1), ok(X2)) -> FST(X1, X2)
FST(X1, mark(X2)) -> FST(X1, X2)
FST(mark(X1), X2) -> FST(X1, X2)


Rules:


active(fst(0, Z)) -> mark(nil)
active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(len(nil)) -> mark(0)
active(len(cons(X, Z))) -> mark(s(len(Z)))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(fst(X1, X2)) -> fst(active(X1), X2)
active(fst(X1, X2)) -> fst(X1, active(X2))
active(from(X)) -> from(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(len(X)) -> len(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
fst(mark(X1), X2) -> mark(fst(X1, X2))
fst(X1, mark(X2)) -> mark(fst(X1, X2))
fst(ok(X1), ok(X2)) -> ok(fst(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
len(mark(X)) -> mark(len(X))
len(ok(X)) -> ok(len(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(fst(X1, X2)) -> fst(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(len(X)) -> len(proper(X))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

FST(ok(X1), ok(X2)) -> FST(X1, X2)
FST(X1, mark(X2)) -> FST(X1, X2)
FST(mark(X1), X2) -> FST(X1, X2)


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
FST(x1, x2) -> FST(x1, x2)
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 11
Dependency Graph
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
Remaining


Dependency Pair:


Rules:


active(fst(0, Z)) -> mark(nil)
active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(len(nil)) -> mark(0)
active(len(cons(X, Z))) -> mark(s(len(Z)))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(fst(X1, X2)) -> fst(active(X1), X2)
active(fst(X1, X2)) -> fst(X1, active(X2))
active(from(X)) -> from(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(len(X)) -> len(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
fst(mark(X1), X2) -> mark(fst(X1, X2))
fst(X1, mark(X2)) -> mark(fst(X1, X2))
fst(ok(X1), ok(X2)) -> ok(fst(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
len(mark(X)) -> mark(len(X))
len(ok(X)) -> ok(len(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(fst(X1, X2)) -> fst(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(len(X)) -> len(proper(X))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Argument Filtering and Ordering
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
Remaining


Dependency Pairs:

FROM(ok(X)) -> FROM(X)
FROM(mark(X)) -> FROM(X)


Rules:


active(fst(0, Z)) -> mark(nil)
active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(len(nil)) -> mark(0)
active(len(cons(X, Z))) -> mark(s(len(Z)))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(fst(X1, X2)) -> fst(active(X1), X2)
active(fst(X1, X2)) -> fst(X1, active(X2))
active(from(X)) -> from(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(len(X)) -> len(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
fst(mark(X1), X2) -> mark(fst(X1, X2))
fst(X1, mark(X2)) -> mark(fst(X1, X2))
fst(ok(X1), ok(X2)) -> ok(fst(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
len(mark(X)) -> mark(len(X))
len(ok(X)) -> ok(len(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(fst(X1, X2)) -> fst(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(len(X)) -> len(proper(X))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

FROM(ok(X)) -> FROM(X)
FROM(mark(X)) -> FROM(X)


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
FROM(x1) -> FROM(x1)
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
           →DP Problem 12
Dependency Graph
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
Remaining


Dependency Pair:


Rules:


active(fst(0, Z)) -> mark(nil)
active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(len(nil)) -> mark(0)
active(len(cons(X, Z))) -> mark(s(len(Z)))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(fst(X1, X2)) -> fst(active(X1), X2)
active(fst(X1, X2)) -> fst(X1, active(X2))
active(from(X)) -> from(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(len(X)) -> len(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
fst(mark(X1), X2) -> mark(fst(X1, X2))
fst(X1, mark(X2)) -> mark(fst(X1, X2))
fst(ok(X1), ok(X2)) -> ok(fst(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
len(mark(X)) -> mark(len(X))
len(ok(X)) -> ok(len(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(fst(X1, X2)) -> fst(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(len(X)) -> len(proper(X))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
Argument Filtering and Ordering
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
Remaining


Dependency Pair:

S(ok(X)) -> S(X)


Rules:


active(fst(0, Z)) -> mark(nil)
active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(len(nil)) -> mark(0)
active(len(cons(X, Z))) -> mark(s(len(Z)))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(fst(X1, X2)) -> fst(active(X1), X2)
active(fst(X1, X2)) -> fst(X1, active(X2))
active(from(X)) -> from(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(len(X)) -> len(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
fst(mark(X1), X2) -> mark(fst(X1, X2))
fst(X1, mark(X2)) -> mark(fst(X1, X2))
fst(ok(X1), ok(X2)) -> ok(fst(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
len(mark(X)) -> mark(len(X))
len(ok(X)) -> ok(len(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(fst(X1, X2)) -> fst(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(len(X)) -> len(proper(X))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

S(ok(X)) -> S(X)


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
S(x1) -> S(x1)
ok(x1) -> ok(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
           →DP Problem 13
Dependency Graph
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
Remaining


Dependency Pair:


Rules:


active(fst(0, Z)) -> mark(nil)
active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(len(nil)) -> mark(0)
active(len(cons(X, Z))) -> mark(s(len(Z)))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(fst(X1, X2)) -> fst(active(X1), X2)
active(fst(X1, X2)) -> fst(X1, active(X2))
active(from(X)) -> from(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(len(X)) -> len(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
fst(mark(X1), X2) -> mark(fst(X1, X2))
fst(X1, mark(X2)) -> mark(fst(X1, X2))
fst(ok(X1), ok(X2)) -> ok(fst(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
len(mark(X)) -> mark(len(X))
len(ok(X)) -> ok(len(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(fst(X1, X2)) -> fst(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(len(X)) -> len(proper(X))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
Argument Filtering and Ordering
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
Remaining


Dependency Pairs:

ADD(ok(X1), ok(X2)) -> ADD(X1, X2)
ADD(X1, mark(X2)) -> ADD(X1, X2)
ADD(mark(X1), X2) -> ADD(X1, X2)


Rules:


active(fst(0, Z)) -> mark(nil)
active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(len(nil)) -> mark(0)
active(len(cons(X, Z))) -> mark(s(len(Z)))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(fst(X1, X2)) -> fst(active(X1), X2)
active(fst(X1, X2)) -> fst(X1, active(X2))
active(from(X)) -> from(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(len(X)) -> len(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
fst(mark(X1), X2) -> mark(fst(X1, X2))
fst(X1, mark(X2)) -> mark(fst(X1, X2))
fst(ok(X1), ok(X2)) -> ok(fst(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
len(mark(X)) -> mark(len(X))
len(ok(X)) -> ok(len(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(fst(X1, X2)) -> fst(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(len(X)) -> len(proper(X))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

ADD(ok(X1), ok(X2)) -> ADD(X1, X2)
ADD(X1, mark(X2)) -> ADD(X1, X2)
ADD(mark(X1), X2) -> ADD(X1, X2)


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
ADD(x1, x2) -> ADD(x1, x2)
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
           →DP Problem 14
Dependency Graph
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
Remaining


Dependency Pair:


Rules:


active(fst(0, Z)) -> mark(nil)
active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(len(nil)) -> mark(0)
active(len(cons(X, Z))) -> mark(s(len(Z)))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(fst(X1, X2)) -> fst(active(X1), X2)
active(fst(X1, X2)) -> fst(X1, active(X2))
active(from(X)) -> from(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(len(X)) -> len(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
fst(mark(X1), X2) -> mark(fst(X1, X2))
fst(X1, mark(X2)) -> mark(fst(X1, X2))
fst(ok(X1), ok(X2)) -> ok(fst(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
len(mark(X)) -> mark(len(X))
len(ok(X)) -> ok(len(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(fst(X1, X2)) -> fst(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(len(X)) -> len(proper(X))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
Argument Filtering and Ordering
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
Remaining


Dependency Pairs:

LEN(ok(X)) -> LEN(X)
LEN(mark(X)) -> LEN(X)


Rules:


active(fst(0, Z)) -> mark(nil)
active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(len(nil)) -> mark(0)
active(len(cons(X, Z))) -> mark(s(len(Z)))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(fst(X1, X2)) -> fst(active(X1), X2)
active(fst(X1, X2)) -> fst(X1, active(X2))
active(from(X)) -> from(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(len(X)) -> len(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
fst(mark(X1), X2) -> mark(fst(X1, X2))
fst(X1, mark(X2)) -> mark(fst(X1, X2))
fst(ok(X1), ok(X2)) -> ok(fst(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
len(mark(X)) -> mark(len(X))
len(ok(X)) -> ok(len(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(fst(X1, X2)) -> fst(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(len(X)) -> len(proper(X))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

LEN(ok(X)) -> LEN(X)
LEN(mark(X)) -> LEN(X)


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
LEN(x1) -> LEN(x1)
ok(x1) -> ok(x1)
mark(x1) -> mark(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
           →DP Problem 15
Dependency Graph
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
Remaining


Dependency Pair:


Rules:


active(fst(0, Z)) -> mark(nil)
active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(len(nil)) -> mark(0)
active(len(cons(X, Z))) -> mark(s(len(Z)))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(fst(X1, X2)) -> fst(active(X1), X2)
active(fst(X1, X2)) -> fst(X1, active(X2))
active(from(X)) -> from(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(len(X)) -> len(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
fst(mark(X1), X2) -> mark(fst(X1, X2))
fst(X1, mark(X2)) -> mark(fst(X1, X2))
fst(ok(X1), ok(X2)) -> ok(fst(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
len(mark(X)) -> mark(len(X))
len(ok(X)) -> ok(len(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(fst(X1, X2)) -> fst(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(len(X)) -> len(proper(X))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
Argument Filtering and Ordering
       →DP Problem 8
AFS
       →DP Problem 9
Remaining


Dependency Pairs:

ACTIVE(len(X)) -> ACTIVE(X)
ACTIVE(add(X1, X2)) -> ACTIVE(X2)
ACTIVE(add(X1, X2)) -> ACTIVE(X1)
ACTIVE(from(X)) -> ACTIVE(X)
ACTIVE(fst(X1, X2)) -> ACTIVE(X2)
ACTIVE(fst(X1, X2)) -> ACTIVE(X1)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)


Rules:


active(fst(0, Z)) -> mark(nil)
active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(len(nil)) -> mark(0)
active(len(cons(X, Z))) -> mark(s(len(Z)))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(fst(X1, X2)) -> fst(active(X1), X2)
active(fst(X1, X2)) -> fst(X1, active(X2))
active(from(X)) -> from(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(len(X)) -> len(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
fst(mark(X1), X2) -> mark(fst(X1, X2))
fst(X1, mark(X2)) -> mark(fst(X1, X2))
fst(ok(X1), ok(X2)) -> ok(fst(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
len(mark(X)) -> mark(len(X))
len(ok(X)) -> ok(len(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(fst(X1, X2)) -> fst(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(len(X)) -> len(proper(X))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

ACTIVE(len(X)) -> ACTIVE(X)
ACTIVE(add(X1, X2)) -> ACTIVE(X2)
ACTIVE(add(X1, X2)) -> ACTIVE(X1)
ACTIVE(from(X)) -> ACTIVE(X)
ACTIVE(fst(X1, X2)) -> ACTIVE(X2)
ACTIVE(fst(X1, X2)) -> ACTIVE(X1)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
ACTIVE(x1) -> ACTIVE(x1)
add(x1, x2) -> add(x1, x2)
fst(x1, x2) -> fst(x1, x2)
from(x1) -> from(x1)
len(x1) -> len(x1)
cons(x1, x2) -> cons(x1, x2)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
           →DP Problem 16
Dependency Graph
       →DP Problem 8
AFS
       →DP Problem 9
Remaining


Dependency Pair:


Rules:


active(fst(0, Z)) -> mark(nil)
active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(len(nil)) -> mark(0)
active(len(cons(X, Z))) -> mark(s(len(Z)))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(fst(X1, X2)) -> fst(active(X1), X2)
active(fst(X1, X2)) -> fst(X1, active(X2))
active(from(X)) -> from(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(len(X)) -> len(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
fst(mark(X1), X2) -> mark(fst(X1, X2))
fst(X1, mark(X2)) -> mark(fst(X1, X2))
fst(ok(X1), ok(X2)) -> ok(fst(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
len(mark(X)) -> mark(len(X))
len(ok(X)) -> ok(len(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(fst(X1, X2)) -> fst(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(len(X)) -> len(proper(X))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
Argument Filtering and Ordering
       →DP Problem 9
Remaining


Dependency Pairs:

PROPER(len(X)) -> PROPER(X)
PROPER(add(X1, X2)) -> PROPER(X2)
PROPER(add(X1, X2)) -> PROPER(X1)
PROPER(from(X)) -> PROPER(X)
PROPER(fst(X1, X2)) -> PROPER(X2)
PROPER(fst(X1, X2)) -> PROPER(X1)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(s(X)) -> PROPER(X)


Rules:


active(fst(0, Z)) -> mark(nil)
active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(len(nil)) -> mark(0)
active(len(cons(X, Z))) -> mark(s(len(Z)))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(fst(X1, X2)) -> fst(active(X1), X2)
active(fst(X1, X2)) -> fst(X1, active(X2))
active(from(X)) -> from(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(len(X)) -> len(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
fst(mark(X1), X2) -> mark(fst(X1, X2))
fst(X1, mark(X2)) -> mark(fst(X1, X2))
fst(ok(X1), ok(X2)) -> ok(fst(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
len(mark(X)) -> mark(len(X))
len(ok(X)) -> ok(len(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(fst(X1, X2)) -> fst(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(len(X)) -> len(proper(X))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

PROPER(len(X)) -> PROPER(X)
PROPER(add(X1, X2)) -> PROPER(X2)
PROPER(add(X1, X2)) -> PROPER(X1)
PROPER(from(X)) -> PROPER(X)
PROPER(fst(X1, X2)) -> PROPER(X2)
PROPER(fst(X1, X2)) -> PROPER(X1)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(s(X)) -> PROPER(X)


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
PROPER(x1) -> PROPER(x1)
add(x1, x2) -> add(x1, x2)
cons(x1, x2) -> cons(x1, x2)
from(x1) -> from(x1)
len(x1) -> len(x1)
fst(x1, x2) -> fst(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
           →DP Problem 17
Dependency Graph
       →DP Problem 9
Remaining


Dependency Pair:


Rules:


active(fst(0, Z)) -> mark(nil)
active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(len(nil)) -> mark(0)
active(len(cons(X, Z))) -> mark(s(len(Z)))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(fst(X1, X2)) -> fst(active(X1), X2)
active(fst(X1, X2)) -> fst(X1, active(X2))
active(from(X)) -> from(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(len(X)) -> len(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
fst(mark(X1), X2) -> mark(fst(X1, X2))
fst(X1, mark(X2)) -> mark(fst(X1, X2))
fst(ok(X1), ok(X2)) -> ok(fst(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
len(mark(X)) -> mark(len(X))
len(ok(X)) -> ok(len(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(fst(X1, X2)) -> fst(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(len(X)) -> len(proper(X))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
Remaining Obligation(s)




The following remains to be proven:
Dependency Pairs:

TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))


Rules:


active(fst(0, Z)) -> mark(nil)
active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(len(nil)) -> mark(0)
active(len(cons(X, Z))) -> mark(s(len(Z)))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(fst(X1, X2)) -> fst(active(X1), X2)
active(fst(X1, X2)) -> fst(X1, active(X2))
active(from(X)) -> from(active(X))
active(add(X1, X2)) -> add(active(X1), X2)
active(add(X1, X2)) -> add(X1, active(X2))
active(len(X)) -> len(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
fst(mark(X1), X2) -> mark(fst(X1, X2))
fst(X1, mark(X2)) -> mark(fst(X1, X2))
fst(ok(X1), ok(X2)) -> ok(fst(X1, X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
add(mark(X1), X2) -> mark(add(X1, X2))
add(X1, mark(X2)) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
len(mark(X)) -> mark(len(X))
len(ok(X)) -> ok(len(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(fst(X1, X2)) -> fst(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(len(X)) -> len(proper(X))
s(ok(X)) -> ok(s(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost



Innermost Termination of R could not be shown.
Duration:
0:09 minutes