Term Rewriting System R:
[N, X, Y]
terms(N) -> cons(recip(sqr(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y)) -> cons(Y)

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

TERMS(N) -> SQR(N)
SQR(s(X)) -> ADD(sqr(X), dbl(X))
SQR(s(X)) -> SQR(X)
SQR(s(X)) -> DBL(X)
DBL(s(X)) -> DBL(X)
ADD(s(X), Y) -> ADD(X, Y)

Furthermore, R contains three SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
AFS
       →DP Problem 3
AFS


Dependency Pair:

ADD(s(X), Y) -> ADD(X, Y)


Rules:


terms(N) -> cons(recip(sqr(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y)) -> cons(Y)


Strategy:

innermost




The following dependency pair can be strictly oriented:

ADD(s(X), Y) -> ADD(X, Y)


There are no usable rules for innermost that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
ADD(x1, x2) -> ADD(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 4
Dependency Graph
       →DP Problem 2
AFS
       →DP Problem 3
AFS


Dependency Pair:


Rules:


terms(N) -> cons(recip(sqr(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y)) -> cons(Y)


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Argument Filtering and Ordering
       →DP Problem 3
AFS


Dependency Pair:

DBL(s(X)) -> DBL(X)


Rules:


terms(N) -> cons(recip(sqr(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y)) -> cons(Y)


Strategy:

innermost




The following dependency pair can be strictly oriented:

DBL(s(X)) -> DBL(X)


There are no usable rules for innermost that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
DBL(x1) -> DBL(x1)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 5
Dependency Graph
       →DP Problem 3
AFS


Dependency Pair:


Rules:


terms(N) -> cons(recip(sqr(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y)) -> cons(Y)


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Argument Filtering and Ordering


Dependency Pair:

SQR(s(X)) -> SQR(X)


Rules:


terms(N) -> cons(recip(sqr(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y)) -> cons(Y)


Strategy:

innermost




The following dependency pair can be strictly oriented:

SQR(s(X)) -> SQR(X)


There are no usable rules for innermost that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
SQR(x1) -> SQR(x1)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
           →DP Problem 6
Dependency Graph


Dependency Pair:


Rules:


terms(N) -> cons(recip(sqr(N)))
sqr(0) -> 0
sqr(s(X)) -> s(add(sqr(X), dbl(X)))
dbl(0) -> 0
dbl(s(X)) -> s(s(dbl(X)))
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
first(0, X) -> nil
first(s(X), cons(Y)) -> cons(Y)


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes