R
↳Dependency Pair Analysis
ATERMS(N) -> ASQR(mark(N))
ATERMS(N) -> MARK(N)
AADD(0, X) -> MARK(X)
AFIRST(s(X), cons(Y, Z)) -> MARK(Y)
MARK(terms(X)) -> ATERMS(mark(X))
MARK(terms(X)) -> MARK(X)
MARK(sqr(X)) -> ASQR(mark(X))
MARK(sqr(X)) -> MARK(X)
MARK(add(X1, X2)) -> AADD(mark(X1), mark(X2))
MARK(add(X1, X2)) -> MARK(X1)
MARK(add(X1, X2)) -> MARK(X2)
MARK(dbl(X)) -> ADBL(mark(X))
MARK(dbl(X)) -> MARK(X)
MARK(first(X1, X2)) -> AFIRST(mark(X1), mark(X2))
MARK(first(X1, X2)) -> MARK(X1)
MARK(first(X1, X2)) -> MARK(X2)
MARK(cons(X1, X2)) -> MARK(X1)
MARK(recip(X)) -> MARK(X)
R
↳DPs
→DP Problem 1
↳Negative Polynomial Order
MARK(recip(X)) -> MARK(X)
MARK(cons(X1, X2)) -> MARK(X1)
MARK(first(X1, X2)) -> MARK(X2)
MARK(first(X1, X2)) -> MARK(X1)
AFIRST(s(X), cons(Y, Z)) -> MARK(Y)
MARK(first(X1, X2)) -> AFIRST(mark(X1), mark(X2))
MARK(dbl(X)) -> MARK(X)
MARK(add(X1, X2)) -> MARK(X2)
MARK(add(X1, X2)) -> MARK(X1)
AADD(0, X) -> MARK(X)
MARK(add(X1, X2)) -> AADD(mark(X1), mark(X2))
MARK(sqr(X)) -> MARK(X)
MARK(terms(X)) -> MARK(X)
MARK(terms(X)) -> ATERMS(mark(X))
ATERMS(N) -> MARK(N)
aterms(N) -> cons(recip(asqr(mark(N))), terms(s(N)))
aterms(X) -> terms(X)
asqr(0) -> 0
asqr(s(X)) -> s(add(sqr(X), dbl(X)))
asqr(X) -> sqr(X)
adbl(0) -> 0
adbl(s(X)) -> s(s(dbl(X)))
adbl(X) -> dbl(X)
aadd(0, X) -> mark(X)
aadd(s(X), Y) -> s(add(X, Y))
aadd(X1, X2) -> add(X1, X2)
afirst(0, X) -> nil
afirst(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z))
afirst(X1, X2) -> first(X1, X2)
mark(terms(X)) -> aterms(mark(X))
mark(sqr(X)) -> asqr(mark(X))
mark(add(X1, X2)) -> aadd(mark(X1), mark(X2))
mark(dbl(X)) -> adbl(mark(X))
mark(first(X1, X2)) -> afirst(mark(X1), mark(X2))
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(recip(X)) -> recip(mark(X))
mark(s(X)) -> s(X)
mark(0) -> 0
mark(nil) -> nil
innermost
MARK(recip(X)) -> MARK(X)
MARK(terms(X)) -> MARK(X)
MARK(terms(X)) -> ATERMS(mark(X))
afirst(0, X) -> nil
adbl(X) -> dbl(X)
asqr(s(X)) -> s(add(sqr(X), dbl(X)))
mark(first(X1, X2)) -> afirst(mark(X1), mark(X2))
mark(nil) -> nil
mark(s(X)) -> s(X)
mark(dbl(X)) -> adbl(mark(X))
asqr(0) -> 0
mark(recip(X)) -> recip(mark(X))
mark(terms(X)) -> aterms(mark(X))
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(sqr(X)) -> asqr(mark(X))
afirst(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z))
adbl(s(X)) -> s(s(dbl(X)))
aadd(X1, X2) -> add(X1, X2)
aterms(X) -> terms(X)
adbl(0) -> 0
afirst(X1, X2) -> first(X1, X2)
aadd(0, X) -> mark(X)
asqr(X) -> sqr(X)
mark(add(X1, X2)) -> aadd(mark(X1), mark(X2))
mark(0) -> 0
aterms(N) -> cons(recip(asqr(mark(N))), terms(s(N)))
aadd(s(X), Y) -> s(add(X, Y))
POL( MARK(x1) ) = x1
POL( recip(x1) ) = x1 + 1
POL( first(x1, x2) ) = x1 + x2
POL( AADD(x1, x2) ) = x2
POL( add(x1, x2) ) = x1 + x2
POL( mark(x1) ) = x1
POL( ATERMS(x1) ) = x1
POL( AFIRST(x1, x2) ) = x2
POL( cons(x1, x2) ) = x1
POL( dbl(x1) ) = x1
POL( terms(x1) ) = x1 + 1
POL( sqr(x1) ) = x1
POL( afirst(x1, x2) ) = x1 + x2
POL( 0 ) = 0
POL( nil ) = 0
POL( adbl(x1) ) = x1
POL( asqr(x1) ) = x1
POL( s(x1) ) = 0
POL( aterms(x1) ) = x1 + 1
POL( aadd(x1, x2) ) = x1 + x2
R
↳DPs
→DP Problem 1
↳Neg POLO
→DP Problem 2
↳Dependency Graph
MARK(cons(X1, X2)) -> MARK(X1)
MARK(first(X1, X2)) -> MARK(X2)
MARK(first(X1, X2)) -> MARK(X1)
AFIRST(s(X), cons(Y, Z)) -> MARK(Y)
MARK(first(X1, X2)) -> AFIRST(mark(X1), mark(X2))
MARK(dbl(X)) -> MARK(X)
MARK(add(X1, X2)) -> MARK(X2)
MARK(add(X1, X2)) -> MARK(X1)
AADD(0, X) -> MARK(X)
MARK(add(X1, X2)) -> AADD(mark(X1), mark(X2))
MARK(sqr(X)) -> MARK(X)
ATERMS(N) -> MARK(N)
aterms(N) -> cons(recip(asqr(mark(N))), terms(s(N)))
aterms(X) -> terms(X)
asqr(0) -> 0
asqr(s(X)) -> s(add(sqr(X), dbl(X)))
asqr(X) -> sqr(X)
adbl(0) -> 0
adbl(s(X)) -> s(s(dbl(X)))
adbl(X) -> dbl(X)
aadd(0, X) -> mark(X)
aadd(s(X), Y) -> s(add(X, Y))
aadd(X1, X2) -> add(X1, X2)
afirst(0, X) -> nil
afirst(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z))
afirst(X1, X2) -> first(X1, X2)
mark(terms(X)) -> aterms(mark(X))
mark(sqr(X)) -> asqr(mark(X))
mark(add(X1, X2)) -> aadd(mark(X1), mark(X2))
mark(dbl(X)) -> adbl(mark(X))
mark(first(X1, X2)) -> afirst(mark(X1), mark(X2))
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(recip(X)) -> recip(mark(X))
mark(s(X)) -> s(X)
mark(0) -> 0
mark(nil) -> nil
innermost
R
↳DPs
→DP Problem 1
↳Neg POLO
→DP Problem 2
↳DGraph
...
→DP Problem 3
↳Negative Polynomial Order
MARK(first(X1, X2)) -> MARK(X2)
MARK(first(X1, X2)) -> MARK(X1)
AFIRST(s(X), cons(Y, Z)) -> MARK(Y)
MARK(first(X1, X2)) -> AFIRST(mark(X1), mark(X2))
MARK(dbl(X)) -> MARK(X)
MARK(add(X1, X2)) -> MARK(X2)
MARK(add(X1, X2)) -> MARK(X1)
AADD(0, X) -> MARK(X)
MARK(add(X1, X2)) -> AADD(mark(X1), mark(X2))
MARK(sqr(X)) -> MARK(X)
MARK(cons(X1, X2)) -> MARK(X1)
aterms(N) -> cons(recip(asqr(mark(N))), terms(s(N)))
aterms(X) -> terms(X)
asqr(0) -> 0
asqr(s(X)) -> s(add(sqr(X), dbl(X)))
asqr(X) -> sqr(X)
adbl(0) -> 0
adbl(s(X)) -> s(s(dbl(X)))
adbl(X) -> dbl(X)
aadd(0, X) -> mark(X)
aadd(s(X), Y) -> s(add(X, Y))
aadd(X1, X2) -> add(X1, X2)
afirst(0, X) -> nil
afirst(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z))
afirst(X1, X2) -> first(X1, X2)
mark(terms(X)) -> aterms(mark(X))
mark(sqr(X)) -> asqr(mark(X))
mark(add(X1, X2)) -> aadd(mark(X1), mark(X2))
mark(dbl(X)) -> adbl(mark(X))
mark(first(X1, X2)) -> afirst(mark(X1), mark(X2))
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(recip(X)) -> recip(mark(X))
mark(s(X)) -> s(X)
mark(0) -> 0
mark(nil) -> nil
innermost
MARK(first(X1, X2)) -> MARK(X2)
MARK(first(X1, X2)) -> MARK(X1)
MARK(first(X1, X2)) -> AFIRST(mark(X1), mark(X2))
afirst(0, X) -> nil
adbl(X) -> dbl(X)
asqr(s(X)) -> s(add(sqr(X), dbl(X)))
mark(first(X1, X2)) -> afirst(mark(X1), mark(X2))
mark(nil) -> nil
mark(s(X)) -> s(X)
mark(dbl(X)) -> adbl(mark(X))
asqr(0) -> 0
mark(recip(X)) -> recip(mark(X))
mark(terms(X)) -> aterms(mark(X))
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(sqr(X)) -> asqr(mark(X))
afirst(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z))
adbl(s(X)) -> s(s(dbl(X)))
aadd(X1, X2) -> add(X1, X2)
aterms(X) -> terms(X)
adbl(0) -> 0
afirst(X1, X2) -> first(X1, X2)
aadd(0, X) -> mark(X)
asqr(X) -> sqr(X)
mark(add(X1, X2)) -> aadd(mark(X1), mark(X2))
mark(0) -> 0
aterms(N) -> cons(recip(asqr(mark(N))), terms(s(N)))
aadd(s(X), Y) -> s(add(X, Y))
POL( MARK(x1) ) = x1
POL( first(x1, x2) ) = x1 + x2 + 1
POL( add(x1, x2) ) = x1 + x2
POL( AADD(x1, x2) ) = x2
POL( mark(x1) ) = x1
POL( cons(x1, x2) ) = x1
POL( AFIRST(x1, x2) ) = x2
POL( dbl(x1) ) = x1
POL( sqr(x1) ) = x1
POL( afirst(x1, x2) ) = x1 + x2 + 1
POL( 0 ) = 0
POL( nil ) = 0
POL( adbl(x1) ) = x1
POL( asqr(x1) ) = x1
POL( s(x1) ) = 0
POL( recip(x1) ) = 0
POL( terms(x1) ) = 0
POL( aterms(x1) ) = 0
POL( aadd(x1, x2) ) = x1 + x2
R
↳DPs
→DP Problem 1
↳Neg POLO
→DP Problem 2
↳DGraph
...
→DP Problem 4
↳Dependency Graph
AFIRST(s(X), cons(Y, Z)) -> MARK(Y)
MARK(dbl(X)) -> MARK(X)
MARK(add(X1, X2)) -> MARK(X2)
MARK(add(X1, X2)) -> MARK(X1)
AADD(0, X) -> MARK(X)
MARK(add(X1, X2)) -> AADD(mark(X1), mark(X2))
MARK(sqr(X)) -> MARK(X)
MARK(cons(X1, X2)) -> MARK(X1)
aterms(N) -> cons(recip(asqr(mark(N))), terms(s(N)))
aterms(X) -> terms(X)
asqr(0) -> 0
asqr(s(X)) -> s(add(sqr(X), dbl(X)))
asqr(X) -> sqr(X)
adbl(0) -> 0
adbl(s(X)) -> s(s(dbl(X)))
adbl(X) -> dbl(X)
aadd(0, X) -> mark(X)
aadd(s(X), Y) -> s(add(X, Y))
aadd(X1, X2) -> add(X1, X2)
afirst(0, X) -> nil
afirst(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z))
afirst(X1, X2) -> first(X1, X2)
mark(terms(X)) -> aterms(mark(X))
mark(sqr(X)) -> asqr(mark(X))
mark(add(X1, X2)) -> aadd(mark(X1), mark(X2))
mark(dbl(X)) -> adbl(mark(X))
mark(first(X1, X2)) -> afirst(mark(X1), mark(X2))
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(recip(X)) -> recip(mark(X))
mark(s(X)) -> s(X)
mark(0) -> 0
mark(nil) -> nil
innermost
R
↳DPs
→DP Problem 1
↳Neg POLO
→DP Problem 2
↳DGraph
...
→DP Problem 5
↳Negative Polynomial Order
MARK(cons(X1, X2)) -> MARK(X1)
MARK(dbl(X)) -> MARK(X)
MARK(add(X1, X2)) -> MARK(X2)
MARK(add(X1, X2)) -> MARK(X1)
AADD(0, X) -> MARK(X)
MARK(add(X1, X2)) -> AADD(mark(X1), mark(X2))
MARK(sqr(X)) -> MARK(X)
aterms(N) -> cons(recip(asqr(mark(N))), terms(s(N)))
aterms(X) -> terms(X)
asqr(0) -> 0
asqr(s(X)) -> s(add(sqr(X), dbl(X)))
asqr(X) -> sqr(X)
adbl(0) -> 0
adbl(s(X)) -> s(s(dbl(X)))
adbl(X) -> dbl(X)
aadd(0, X) -> mark(X)
aadd(s(X), Y) -> s(add(X, Y))
aadd(X1, X2) -> add(X1, X2)
afirst(0, X) -> nil
afirst(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z))
afirst(X1, X2) -> first(X1, X2)
mark(terms(X)) -> aterms(mark(X))
mark(sqr(X)) -> asqr(mark(X))
mark(add(X1, X2)) -> aadd(mark(X1), mark(X2))
mark(dbl(X)) -> adbl(mark(X))
mark(first(X1, X2)) -> afirst(mark(X1), mark(X2))
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(recip(X)) -> recip(mark(X))
mark(s(X)) -> s(X)
mark(0) -> 0
mark(nil) -> nil
innermost
MARK(cons(X1, X2)) -> MARK(X1)
afirst(0, X) -> nil
adbl(X) -> dbl(X)
asqr(s(X)) -> s(add(sqr(X), dbl(X)))
mark(first(X1, X2)) -> afirst(mark(X1), mark(X2))
mark(nil) -> nil
mark(s(X)) -> s(X)
mark(dbl(X)) -> adbl(mark(X))
asqr(0) -> 0
mark(recip(X)) -> recip(mark(X))
mark(terms(X)) -> aterms(mark(X))
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(sqr(X)) -> asqr(mark(X))
afirst(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z))
adbl(s(X)) -> s(s(dbl(X)))
aadd(X1, X2) -> add(X1, X2)
aterms(X) -> terms(X)
adbl(0) -> 0
afirst(X1, X2) -> first(X1, X2)
aadd(0, X) -> mark(X)
asqr(X) -> sqr(X)
mark(add(X1, X2)) -> aadd(mark(X1), mark(X2))
mark(0) -> 0
aterms(N) -> cons(recip(asqr(mark(N))), terms(s(N)))
aadd(s(X), Y) -> s(add(X, Y))
POL( MARK(x1) ) = x1
POL( cons(x1, x2) ) = x1 + 1
POL( AADD(x1, x2) ) = x2
POL( add(x1, x2) ) = x1 + x2
POL( mark(x1) ) = x1
POL( dbl(x1) ) = x1
POL( sqr(x1) ) = x1
POL( afirst(x1, x2) ) = x2
POL( nil ) = 0
POL( adbl(x1) ) = x1
POL( asqr(x1) ) = x1
POL( s(x1) ) = 0
POL( first(x1, x2) ) = x2
POL( 0 ) = 0
POL( recip(x1) ) = 0
POL( terms(x1) ) = 1
POL( aterms(x1) ) = 1
POL( aadd(x1, x2) ) = x1 + x2
R
↳DPs
→DP Problem 1
↳Neg POLO
→DP Problem 2
↳DGraph
...
→DP Problem 6
↳Negative Polynomial Order
MARK(dbl(X)) -> MARK(X)
MARK(add(X1, X2)) -> MARK(X2)
MARK(add(X1, X2)) -> MARK(X1)
AADD(0, X) -> MARK(X)
MARK(add(X1, X2)) -> AADD(mark(X1), mark(X2))
MARK(sqr(X)) -> MARK(X)
aterms(N) -> cons(recip(asqr(mark(N))), terms(s(N)))
aterms(X) -> terms(X)
asqr(0) -> 0
asqr(s(X)) -> s(add(sqr(X), dbl(X)))
asqr(X) -> sqr(X)
adbl(0) -> 0
adbl(s(X)) -> s(s(dbl(X)))
adbl(X) -> dbl(X)
aadd(0, X) -> mark(X)
aadd(s(X), Y) -> s(add(X, Y))
aadd(X1, X2) -> add(X1, X2)
afirst(0, X) -> nil
afirst(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z))
afirst(X1, X2) -> first(X1, X2)
mark(terms(X)) -> aterms(mark(X))
mark(sqr(X)) -> asqr(mark(X))
mark(add(X1, X2)) -> aadd(mark(X1), mark(X2))
mark(dbl(X)) -> adbl(mark(X))
mark(first(X1, X2)) -> afirst(mark(X1), mark(X2))
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(recip(X)) -> recip(mark(X))
mark(s(X)) -> s(X)
mark(0) -> 0
mark(nil) -> nil
innermost
MARK(dbl(X)) -> MARK(X)
afirst(0, X) -> nil
adbl(X) -> dbl(X)
asqr(s(X)) -> s(add(sqr(X), dbl(X)))
mark(first(X1, X2)) -> afirst(mark(X1), mark(X2))
mark(nil) -> nil
mark(s(X)) -> s(X)
mark(dbl(X)) -> adbl(mark(X))
asqr(0) -> 0
mark(recip(X)) -> recip(mark(X))
mark(terms(X)) -> aterms(mark(X))
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(sqr(X)) -> asqr(mark(X))
afirst(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z))
adbl(s(X)) -> s(s(dbl(X)))
aadd(X1, X2) -> add(X1, X2)
aterms(X) -> terms(X)
adbl(0) -> 0
afirst(X1, X2) -> first(X1, X2)
aadd(0, X) -> mark(X)
asqr(X) -> sqr(X)
mark(add(X1, X2)) -> aadd(mark(X1), mark(X2))
mark(0) -> 0
aterms(N) -> cons(recip(asqr(mark(N))), terms(s(N)))
aadd(s(X), Y) -> s(add(X, Y))
POL( MARK(x1) ) = x1
POL( dbl(x1) ) = x1 + 1
POL( add(x1, x2) ) = x1 + x2
POL( AADD(x1, x2) ) = x2
POL( mark(x1) ) = x1
POL( sqr(x1) ) = x1
POL( afirst(x1, x2) ) = 0
POL( nil ) = 0
POL( adbl(x1) ) = x1 + 1
POL( asqr(x1) ) = x1
POL( s(x1) ) = 0
POL( 0 ) = 0
POL( recip(x1) ) = 0
POL( terms(x1) ) = 0
POL( aterms(x1) ) = 0
POL( cons(x1, x2) ) = 0
POL( aadd(x1, x2) ) = x1 + x2
POL( first(x1, x2) ) = 0
R
↳DPs
→DP Problem 1
↳Neg POLO
→DP Problem 2
↳DGraph
...
→DP Problem 7
↳Negative Polynomial Order
MARK(add(X1, X2)) -> MARK(X2)
MARK(add(X1, X2)) -> MARK(X1)
AADD(0, X) -> MARK(X)
MARK(add(X1, X2)) -> AADD(mark(X1), mark(X2))
MARK(sqr(X)) -> MARK(X)
aterms(N) -> cons(recip(asqr(mark(N))), terms(s(N)))
aterms(X) -> terms(X)
asqr(0) -> 0
asqr(s(X)) -> s(add(sqr(X), dbl(X)))
asqr(X) -> sqr(X)
adbl(0) -> 0
adbl(s(X)) -> s(s(dbl(X)))
adbl(X) -> dbl(X)
aadd(0, X) -> mark(X)
aadd(s(X), Y) -> s(add(X, Y))
aadd(X1, X2) -> add(X1, X2)
afirst(0, X) -> nil
afirst(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z))
afirst(X1, X2) -> first(X1, X2)
mark(terms(X)) -> aterms(mark(X))
mark(sqr(X)) -> asqr(mark(X))
mark(add(X1, X2)) -> aadd(mark(X1), mark(X2))
mark(dbl(X)) -> adbl(mark(X))
mark(first(X1, X2)) -> afirst(mark(X1), mark(X2))
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(recip(X)) -> recip(mark(X))
mark(s(X)) -> s(X)
mark(0) -> 0
mark(nil) -> nil
innermost
MARK(add(X1, X2)) -> MARK(X2)
MARK(add(X1, X2)) -> MARK(X1)
MARK(add(X1, X2)) -> AADD(mark(X1), mark(X2))
afirst(0, X) -> nil
adbl(X) -> dbl(X)
asqr(s(X)) -> s(add(sqr(X), dbl(X)))
mark(first(X1, X2)) -> afirst(mark(X1), mark(X2))
mark(nil) -> nil
mark(s(X)) -> s(X)
mark(dbl(X)) -> adbl(mark(X))
asqr(0) -> 0
mark(recip(X)) -> recip(mark(X))
mark(terms(X)) -> aterms(mark(X))
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(sqr(X)) -> asqr(mark(X))
afirst(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z))
adbl(s(X)) -> s(s(dbl(X)))
aadd(X1, X2) -> add(X1, X2)
aterms(X) -> terms(X)
adbl(0) -> 0
afirst(X1, X2) -> first(X1, X2)
aadd(0, X) -> mark(X)
asqr(X) -> sqr(X)
mark(add(X1, X2)) -> aadd(mark(X1), mark(X2))
mark(0) -> 0
aterms(N) -> cons(recip(asqr(mark(N))), terms(s(N)))
aadd(s(X), Y) -> s(add(X, Y))
POL( MARK(x1) ) = x1
POL( add(x1, x2) ) = x1 + x2 + 1
POL( AADD(x1, x2) ) = x2
POL( mark(x1) ) = x1
POL( sqr(x1) ) = x1
POL( afirst(x1, x2) ) = 0
POL( nil ) = 0
POL( adbl(x1) ) = 0
POL( dbl(x1) ) = 0
POL( asqr(x1) ) = x1
POL( s(x1) ) = 0
POL( 0 ) = 0
POL( recip(x1) ) = 0
POL( terms(x1) ) = 0
POL( aterms(x1) ) = 0
POL( cons(x1, x2) ) = 0
POL( aadd(x1, x2) ) = x1 + x2 + 1
POL( first(x1, x2) ) = 0
R
↳DPs
→DP Problem 1
↳Neg POLO
→DP Problem 2
↳DGraph
...
→DP Problem 8
↳Dependency Graph
AADD(0, X) -> MARK(X)
MARK(sqr(X)) -> MARK(X)
aterms(N) -> cons(recip(asqr(mark(N))), terms(s(N)))
aterms(X) -> terms(X)
asqr(0) -> 0
asqr(s(X)) -> s(add(sqr(X), dbl(X)))
asqr(X) -> sqr(X)
adbl(0) -> 0
adbl(s(X)) -> s(s(dbl(X)))
adbl(X) -> dbl(X)
aadd(0, X) -> mark(X)
aadd(s(X), Y) -> s(add(X, Y))
aadd(X1, X2) -> add(X1, X2)
afirst(0, X) -> nil
afirst(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z))
afirst(X1, X2) -> first(X1, X2)
mark(terms(X)) -> aterms(mark(X))
mark(sqr(X)) -> asqr(mark(X))
mark(add(X1, X2)) -> aadd(mark(X1), mark(X2))
mark(dbl(X)) -> adbl(mark(X))
mark(first(X1, X2)) -> afirst(mark(X1), mark(X2))
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(recip(X)) -> recip(mark(X))
mark(s(X)) -> s(X)
mark(0) -> 0
mark(nil) -> nil
innermost
R
↳DPs
→DP Problem 1
↳Neg POLO
→DP Problem 2
↳DGraph
...
→DP Problem 9
↳Usable Rules (Innermost)
MARK(sqr(X)) -> MARK(X)
aterms(N) -> cons(recip(asqr(mark(N))), terms(s(N)))
aterms(X) -> terms(X)
asqr(0) -> 0
asqr(s(X)) -> s(add(sqr(X), dbl(X)))
asqr(X) -> sqr(X)
adbl(0) -> 0
adbl(s(X)) -> s(s(dbl(X)))
adbl(X) -> dbl(X)
aadd(0, X) -> mark(X)
aadd(s(X), Y) -> s(add(X, Y))
aadd(X1, X2) -> add(X1, X2)
afirst(0, X) -> nil
afirst(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z))
afirst(X1, X2) -> first(X1, X2)
mark(terms(X)) -> aterms(mark(X))
mark(sqr(X)) -> asqr(mark(X))
mark(add(X1, X2)) -> aadd(mark(X1), mark(X2))
mark(dbl(X)) -> adbl(mark(X))
mark(first(X1, X2)) -> afirst(mark(X1), mark(X2))
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(recip(X)) -> recip(mark(X))
mark(s(X)) -> s(X)
mark(0) -> 0
mark(nil) -> nil
innermost
R
↳DPs
→DP Problem 1
↳Neg POLO
→DP Problem 2
↳DGraph
...
→DP Problem 10
↳Size-Change Principle
MARK(sqr(X)) -> MARK(X)
none
innermost
|
|
trivial
sqr(x1) -> sqr(x1)