R
↳Dependency Pair Analysis
ATERMS(N) -> ASQR(mark(N))
ATERMS(N) -> MARK(N)
AADD(0, X) -> MARK(X)
AFIRST(s(X), cons(Y, Z)) -> MARK(Y)
MARK(terms(X)) -> ATERMS(mark(X))
MARK(terms(X)) -> MARK(X)
MARK(sqr(X)) -> ASQR(mark(X))
MARK(sqr(X)) -> MARK(X)
MARK(add(X1, X2)) -> AADD(mark(X1), mark(X2))
MARK(add(X1, X2)) -> MARK(X1)
MARK(add(X1, X2)) -> MARK(X2)
MARK(dbl(X)) -> ADBL(mark(X))
MARK(dbl(X)) -> MARK(X)
MARK(first(X1, X2)) -> AFIRST(mark(X1), mark(X2))
MARK(first(X1, X2)) -> MARK(X1)
MARK(first(X1, X2)) -> MARK(X2)
MARK(cons(X1, X2)) -> MARK(X1)
MARK(recip(X)) -> MARK(X)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
MARK(recip(X)) -> MARK(X)
MARK(cons(X1, X2)) -> MARK(X1)
MARK(first(X1, X2)) -> MARK(X2)
MARK(first(X1, X2)) -> MARK(X1)
AFIRST(s(X), cons(Y, Z)) -> MARK(Y)
MARK(first(X1, X2)) -> AFIRST(mark(X1), mark(X2))
MARK(dbl(X)) -> MARK(X)
MARK(add(X1, X2)) -> MARK(X2)
MARK(add(X1, X2)) -> MARK(X1)
AADD(0, X) -> MARK(X)
MARK(add(X1, X2)) -> AADD(mark(X1), mark(X2))
MARK(sqr(X)) -> MARK(X)
MARK(terms(X)) -> MARK(X)
MARK(terms(X)) -> ATERMS(mark(X))
ATERMS(N) -> MARK(N)
aterms(N) -> cons(recip(asqr(mark(N))), terms(s(N)))
aterms(X) -> terms(X)
asqr(0) -> 0
asqr(s(X)) -> s(add(sqr(X), dbl(X)))
asqr(X) -> sqr(X)
adbl(0) -> 0
adbl(s(X)) -> s(s(dbl(X)))
adbl(X) -> dbl(X)
aadd(0, X) -> mark(X)
aadd(s(X), Y) -> s(add(X, Y))
aadd(X1, X2) -> add(X1, X2)
afirst(0, X) -> nil
afirst(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z))
afirst(X1, X2) -> first(X1, X2)
mark(terms(X)) -> aterms(mark(X))
mark(sqr(X)) -> asqr(mark(X))
mark(add(X1, X2)) -> aadd(mark(X1), mark(X2))
mark(dbl(X)) -> adbl(mark(X))
mark(first(X1, X2)) -> afirst(mark(X1), mark(X2))
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(recip(X)) -> recip(mark(X))
mark(s(X)) -> s(X)
mark(0) -> 0
mark(nil) -> nil
innermost
MARK(recip(X)) -> MARK(X)
MARK(terms(X)) -> MARK(X)
MARK(terms(X)) -> ATERMS(mark(X))
mark(terms(X)) -> aterms(mark(X))
mark(sqr(X)) -> asqr(mark(X))
mark(add(X1, X2)) -> aadd(mark(X1), mark(X2))
mark(dbl(X)) -> adbl(mark(X))
mark(first(X1, X2)) -> afirst(mark(X1), mark(X2))
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(recip(X)) -> recip(mark(X))
mark(s(X)) -> s(X)
mark(0) -> 0
mark(nil) -> nil
afirst(0, X) -> nil
afirst(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z))
afirst(X1, X2) -> first(X1, X2)
aadd(0, X) -> mark(X)
aadd(s(X), Y) -> s(add(X, Y))
aadd(X1, X2) -> add(X1, X2)
aterms(N) -> cons(recip(asqr(mark(N))), terms(s(N)))
aterms(X) -> terms(X)
asqr(0) -> 0
asqr(s(X)) -> s(add(sqr(X), dbl(X)))
asqr(X) -> sqr(X)
adbl(0) -> 0
adbl(s(X)) -> s(s(dbl(X)))
adbl(X) -> dbl(X)
POL(MARK(x1)) = x1 POL(sqr(x1)) = x1 POL(a__terms(x1)) = 1 + x1 POL(a__dbl(x1)) = x1 POL(terms(x1)) = 1 + x1 POL(mark(x1)) = x1 POL(a__add(x1, x2)) = x1 + x2 POL(a__first(x1, x2)) = x1 + x2 POL(add(x1, x2)) = x1 + x2 POL(A__ADD(x1, x2)) = x2 POL(A__FIRST(x1, x2)) = x2 POL(0) = 0 POL(first(x1, x2)) = x1 + x2 POL(cons(x1, x2)) = x1 POL(a__sqr(x1)) = x1 POL(dbl(x1)) = x1 POL(nil) = 0 POL(s(x1)) = 0 POL(recip(x1)) = 1 + x1 POL(A__TERMS(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Dependency Graph
MARK(cons(X1, X2)) -> MARK(X1)
MARK(first(X1, X2)) -> MARK(X2)
MARK(first(X1, X2)) -> MARK(X1)
AFIRST(s(X), cons(Y, Z)) -> MARK(Y)
MARK(first(X1, X2)) -> AFIRST(mark(X1), mark(X2))
MARK(dbl(X)) -> MARK(X)
MARK(add(X1, X2)) -> MARK(X2)
MARK(add(X1, X2)) -> MARK(X1)
AADD(0, X) -> MARK(X)
MARK(add(X1, X2)) -> AADD(mark(X1), mark(X2))
MARK(sqr(X)) -> MARK(X)
ATERMS(N) -> MARK(N)
aterms(N) -> cons(recip(asqr(mark(N))), terms(s(N)))
aterms(X) -> terms(X)
asqr(0) -> 0
asqr(s(X)) -> s(add(sqr(X), dbl(X)))
asqr(X) -> sqr(X)
adbl(0) -> 0
adbl(s(X)) -> s(s(dbl(X)))
adbl(X) -> dbl(X)
aadd(0, X) -> mark(X)
aadd(s(X), Y) -> s(add(X, Y))
aadd(X1, X2) -> add(X1, X2)
afirst(0, X) -> nil
afirst(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z))
afirst(X1, X2) -> first(X1, X2)
mark(terms(X)) -> aterms(mark(X))
mark(sqr(X)) -> asqr(mark(X))
mark(add(X1, X2)) -> aadd(mark(X1), mark(X2))
mark(dbl(X)) -> adbl(mark(X))
mark(first(X1, X2)) -> afirst(mark(X1), mark(X2))
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(recip(X)) -> recip(mark(X))
mark(s(X)) -> s(X)
mark(0) -> 0
mark(nil) -> nil
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 3
↳Polynomial Ordering
MARK(first(X1, X2)) -> MARK(X2)
MARK(first(X1, X2)) -> MARK(X1)
AFIRST(s(X), cons(Y, Z)) -> MARK(Y)
MARK(first(X1, X2)) -> AFIRST(mark(X1), mark(X2))
MARK(dbl(X)) -> MARK(X)
MARK(add(X1, X2)) -> MARK(X2)
MARK(add(X1, X2)) -> MARK(X1)
AADD(0, X) -> MARK(X)
MARK(add(X1, X2)) -> AADD(mark(X1), mark(X2))
MARK(sqr(X)) -> MARK(X)
MARK(cons(X1, X2)) -> MARK(X1)
aterms(N) -> cons(recip(asqr(mark(N))), terms(s(N)))
aterms(X) -> terms(X)
asqr(0) -> 0
asqr(s(X)) -> s(add(sqr(X), dbl(X)))
asqr(X) -> sqr(X)
adbl(0) -> 0
adbl(s(X)) -> s(s(dbl(X)))
adbl(X) -> dbl(X)
aadd(0, X) -> mark(X)
aadd(s(X), Y) -> s(add(X, Y))
aadd(X1, X2) -> add(X1, X2)
afirst(0, X) -> nil
afirst(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z))
afirst(X1, X2) -> first(X1, X2)
mark(terms(X)) -> aterms(mark(X))
mark(sqr(X)) -> asqr(mark(X))
mark(add(X1, X2)) -> aadd(mark(X1), mark(X2))
mark(dbl(X)) -> adbl(mark(X))
mark(first(X1, X2)) -> afirst(mark(X1), mark(X2))
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(recip(X)) -> recip(mark(X))
mark(s(X)) -> s(X)
mark(0) -> 0
mark(nil) -> nil
innermost
MARK(first(X1, X2)) -> MARK(X2)
MARK(first(X1, X2)) -> MARK(X1)
MARK(first(X1, X2)) -> AFIRST(mark(X1), mark(X2))
mark(terms(X)) -> aterms(mark(X))
mark(sqr(X)) -> asqr(mark(X))
mark(add(X1, X2)) -> aadd(mark(X1), mark(X2))
mark(dbl(X)) -> adbl(mark(X))
mark(first(X1, X2)) -> afirst(mark(X1), mark(X2))
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(recip(X)) -> recip(mark(X))
mark(s(X)) -> s(X)
mark(0) -> 0
mark(nil) -> nil
afirst(0, X) -> nil
afirst(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z))
afirst(X1, X2) -> first(X1, X2)
aadd(0, X) -> mark(X)
aadd(s(X), Y) -> s(add(X, Y))
aadd(X1, X2) -> add(X1, X2)
aterms(N) -> cons(recip(asqr(mark(N))), terms(s(N)))
aterms(X) -> terms(X)
asqr(0) -> 0
asqr(s(X)) -> s(add(sqr(X), dbl(X)))
asqr(X) -> sqr(X)
adbl(0) -> 0
adbl(s(X)) -> s(s(dbl(X)))
adbl(X) -> dbl(X)
POL(MARK(x1)) = x1 POL(sqr(x1)) = x1 POL(a__terms(x1)) = 0 POL(a__dbl(x1)) = x1 POL(terms(x1)) = 0 POL(mark(x1)) = x1 POL(a__add(x1, x2)) = x1 + x2 POL(a__first(x1, x2)) = 1 + x1 + x2 POL(add(x1, x2)) = x1 + x2 POL(A__ADD(x1, x2)) = x2 POL(A__FIRST(x1, x2)) = x2 POL(0) = 0 POL(first(x1, x2)) = 1 + x1 + x2 POL(cons(x1, x2)) = x1 POL(a__sqr(x1)) = x1 POL(dbl(x1)) = x1 POL(nil) = 0 POL(s(x1)) = 0 POL(recip(x1)) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 4
↳Dependency Graph
AFIRST(s(X), cons(Y, Z)) -> MARK(Y)
MARK(dbl(X)) -> MARK(X)
MARK(add(X1, X2)) -> MARK(X2)
MARK(add(X1, X2)) -> MARK(X1)
AADD(0, X) -> MARK(X)
MARK(add(X1, X2)) -> AADD(mark(X1), mark(X2))
MARK(sqr(X)) -> MARK(X)
MARK(cons(X1, X2)) -> MARK(X1)
aterms(N) -> cons(recip(asqr(mark(N))), terms(s(N)))
aterms(X) -> terms(X)
asqr(0) -> 0
asqr(s(X)) -> s(add(sqr(X), dbl(X)))
asqr(X) -> sqr(X)
adbl(0) -> 0
adbl(s(X)) -> s(s(dbl(X)))
adbl(X) -> dbl(X)
aadd(0, X) -> mark(X)
aadd(s(X), Y) -> s(add(X, Y))
aadd(X1, X2) -> add(X1, X2)
afirst(0, X) -> nil
afirst(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z))
afirst(X1, X2) -> first(X1, X2)
mark(terms(X)) -> aterms(mark(X))
mark(sqr(X)) -> asqr(mark(X))
mark(add(X1, X2)) -> aadd(mark(X1), mark(X2))
mark(dbl(X)) -> adbl(mark(X))
mark(first(X1, X2)) -> afirst(mark(X1), mark(X2))
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(recip(X)) -> recip(mark(X))
mark(s(X)) -> s(X)
mark(0) -> 0
mark(nil) -> nil
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 5
↳Polynomial Ordering
MARK(cons(X1, X2)) -> MARK(X1)
MARK(dbl(X)) -> MARK(X)
MARK(add(X1, X2)) -> MARK(X2)
MARK(add(X1, X2)) -> MARK(X1)
AADD(0, X) -> MARK(X)
MARK(add(X1, X2)) -> AADD(mark(X1), mark(X2))
MARK(sqr(X)) -> MARK(X)
aterms(N) -> cons(recip(asqr(mark(N))), terms(s(N)))
aterms(X) -> terms(X)
asqr(0) -> 0
asqr(s(X)) -> s(add(sqr(X), dbl(X)))
asqr(X) -> sqr(X)
adbl(0) -> 0
adbl(s(X)) -> s(s(dbl(X)))
adbl(X) -> dbl(X)
aadd(0, X) -> mark(X)
aadd(s(X), Y) -> s(add(X, Y))
aadd(X1, X2) -> add(X1, X2)
afirst(0, X) -> nil
afirst(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z))
afirst(X1, X2) -> first(X1, X2)
mark(terms(X)) -> aterms(mark(X))
mark(sqr(X)) -> asqr(mark(X))
mark(add(X1, X2)) -> aadd(mark(X1), mark(X2))
mark(dbl(X)) -> adbl(mark(X))
mark(first(X1, X2)) -> afirst(mark(X1), mark(X2))
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(recip(X)) -> recip(mark(X))
mark(s(X)) -> s(X)
mark(0) -> 0
mark(nil) -> nil
innermost
MARK(cons(X1, X2)) -> MARK(X1)
mark(terms(X)) -> aterms(mark(X))
mark(sqr(X)) -> asqr(mark(X))
mark(add(X1, X2)) -> aadd(mark(X1), mark(X2))
mark(dbl(X)) -> adbl(mark(X))
mark(first(X1, X2)) -> afirst(mark(X1), mark(X2))
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(recip(X)) -> recip(mark(X))
mark(s(X)) -> s(X)
mark(0) -> 0
mark(nil) -> nil
afirst(0, X) -> nil
afirst(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z))
afirst(X1, X2) -> first(X1, X2)
aadd(0, X) -> mark(X)
aadd(s(X), Y) -> s(add(X, Y))
aadd(X1, X2) -> add(X1, X2)
aterms(N) -> cons(recip(asqr(mark(N))), terms(s(N)))
aterms(X) -> terms(X)
asqr(0) -> 0
asqr(s(X)) -> s(add(sqr(X), dbl(X)))
asqr(X) -> sqr(X)
adbl(0) -> 0
adbl(s(X)) -> s(s(dbl(X)))
adbl(X) -> dbl(X)
POL(MARK(x1)) = x1 POL(sqr(x1)) = x1 POL(a__terms(x1)) = 1 POL(a__dbl(x1)) = x1 POL(terms(x1)) = 1 POL(mark(x1)) = x1 POL(a__add(x1, x2)) = x1 + x2 POL(a__first(x1, x2)) = x2 POL(add(x1, x2)) = x1 + x2 POL(A__ADD(x1, x2)) = x2 POL(0) = 0 POL(first(x1, x2)) = x2 POL(cons(x1, x2)) = 1 + x1 POL(a__sqr(x1)) = x1 POL(dbl(x1)) = x1 POL(nil) = 0 POL(s(x1)) = 0 POL(recip(x1)) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 6
↳Polynomial Ordering
MARK(dbl(X)) -> MARK(X)
MARK(add(X1, X2)) -> MARK(X2)
MARK(add(X1, X2)) -> MARK(X1)
AADD(0, X) -> MARK(X)
MARK(add(X1, X2)) -> AADD(mark(X1), mark(X2))
MARK(sqr(X)) -> MARK(X)
aterms(N) -> cons(recip(asqr(mark(N))), terms(s(N)))
aterms(X) -> terms(X)
asqr(0) -> 0
asqr(s(X)) -> s(add(sqr(X), dbl(X)))
asqr(X) -> sqr(X)
adbl(0) -> 0
adbl(s(X)) -> s(s(dbl(X)))
adbl(X) -> dbl(X)
aadd(0, X) -> mark(X)
aadd(s(X), Y) -> s(add(X, Y))
aadd(X1, X2) -> add(X1, X2)
afirst(0, X) -> nil
afirst(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z))
afirst(X1, X2) -> first(X1, X2)
mark(terms(X)) -> aterms(mark(X))
mark(sqr(X)) -> asqr(mark(X))
mark(add(X1, X2)) -> aadd(mark(X1), mark(X2))
mark(dbl(X)) -> adbl(mark(X))
mark(first(X1, X2)) -> afirst(mark(X1), mark(X2))
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(recip(X)) -> recip(mark(X))
mark(s(X)) -> s(X)
mark(0) -> 0
mark(nil) -> nil
innermost
MARK(dbl(X)) -> MARK(X)
mark(terms(X)) -> aterms(mark(X))
mark(sqr(X)) -> asqr(mark(X))
mark(add(X1, X2)) -> aadd(mark(X1), mark(X2))
mark(dbl(X)) -> adbl(mark(X))
mark(first(X1, X2)) -> afirst(mark(X1), mark(X2))
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(recip(X)) -> recip(mark(X))
mark(s(X)) -> s(X)
mark(0) -> 0
mark(nil) -> nil
afirst(0, X) -> nil
afirst(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z))
afirst(X1, X2) -> first(X1, X2)
aadd(0, X) -> mark(X)
aadd(s(X), Y) -> s(add(X, Y))
aadd(X1, X2) -> add(X1, X2)
aterms(N) -> cons(recip(asqr(mark(N))), terms(s(N)))
aterms(X) -> terms(X)
asqr(0) -> 0
asqr(s(X)) -> s(add(sqr(X), dbl(X)))
asqr(X) -> sqr(X)
adbl(0) -> 0
adbl(s(X)) -> s(s(dbl(X)))
adbl(X) -> dbl(X)
POL(MARK(x1)) = x1 POL(sqr(x1)) = x1 POL(a__terms(x1)) = 0 POL(a__dbl(x1)) = 1 + x1 POL(terms(x1)) = 0 POL(mark(x1)) = x1 POL(a__add(x1, x2)) = x1 + x2 POL(a__first(x1, x2)) = 0 POL(add(x1, x2)) = x1 + x2 POL(A__ADD(x1, x2)) = x2 POL(0) = 0 POL(first(x1, x2)) = 0 POL(cons(x1, x2)) = 0 POL(a__sqr(x1)) = x1 POL(dbl(x1)) = 1 + x1 POL(nil) = 0 POL(s(x1)) = 0 POL(recip(x1)) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 7
↳Polynomial Ordering
MARK(add(X1, X2)) -> MARK(X2)
MARK(add(X1, X2)) -> MARK(X1)
AADD(0, X) -> MARK(X)
MARK(add(X1, X2)) -> AADD(mark(X1), mark(X2))
MARK(sqr(X)) -> MARK(X)
aterms(N) -> cons(recip(asqr(mark(N))), terms(s(N)))
aterms(X) -> terms(X)
asqr(0) -> 0
asqr(s(X)) -> s(add(sqr(X), dbl(X)))
asqr(X) -> sqr(X)
adbl(0) -> 0
adbl(s(X)) -> s(s(dbl(X)))
adbl(X) -> dbl(X)
aadd(0, X) -> mark(X)
aadd(s(X), Y) -> s(add(X, Y))
aadd(X1, X2) -> add(X1, X2)
afirst(0, X) -> nil
afirst(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z))
afirst(X1, X2) -> first(X1, X2)
mark(terms(X)) -> aterms(mark(X))
mark(sqr(X)) -> asqr(mark(X))
mark(add(X1, X2)) -> aadd(mark(X1), mark(X2))
mark(dbl(X)) -> adbl(mark(X))
mark(first(X1, X2)) -> afirst(mark(X1), mark(X2))
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(recip(X)) -> recip(mark(X))
mark(s(X)) -> s(X)
mark(0) -> 0
mark(nil) -> nil
innermost
MARK(add(X1, X2)) -> MARK(X2)
MARK(add(X1, X2)) -> MARK(X1)
MARK(add(X1, X2)) -> AADD(mark(X1), mark(X2))
mark(terms(X)) -> aterms(mark(X))
mark(sqr(X)) -> asqr(mark(X))
mark(add(X1, X2)) -> aadd(mark(X1), mark(X2))
mark(dbl(X)) -> adbl(mark(X))
mark(first(X1, X2)) -> afirst(mark(X1), mark(X2))
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(recip(X)) -> recip(mark(X))
mark(s(X)) -> s(X)
mark(0) -> 0
mark(nil) -> nil
afirst(0, X) -> nil
afirst(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z))
afirst(X1, X2) -> first(X1, X2)
aadd(0, X) -> mark(X)
aadd(s(X), Y) -> s(add(X, Y))
aadd(X1, X2) -> add(X1, X2)
aterms(N) -> cons(recip(asqr(mark(N))), terms(s(N)))
aterms(X) -> terms(X)
asqr(0) -> 0
asqr(s(X)) -> s(add(sqr(X), dbl(X)))
asqr(X) -> sqr(X)
adbl(0) -> 0
adbl(s(X)) -> s(s(dbl(X)))
adbl(X) -> dbl(X)
POL(MARK(x1)) = x1 POL(sqr(x1)) = x1 POL(a__terms(x1)) = 0 POL(a__dbl(x1)) = 0 POL(terms(x1)) = 0 POL(mark(x1)) = x1 POL(a__add(x1, x2)) = 1 + x1 + x2 POL(a__first(x1, x2)) = 0 POL(add(x1, x2)) = 1 + x1 + x2 POL(A__ADD(x1, x2)) = x2 POL(0) = 0 POL(first(x1, x2)) = 0 POL(cons(x1, x2)) = 0 POL(a__sqr(x1)) = x1 POL(dbl(x1)) = 0 POL(nil) = 0 POL(s(x1)) = 0 POL(recip(x1)) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 8
↳Dependency Graph
AADD(0, X) -> MARK(X)
MARK(sqr(X)) -> MARK(X)
aterms(N) -> cons(recip(asqr(mark(N))), terms(s(N)))
aterms(X) -> terms(X)
asqr(0) -> 0
asqr(s(X)) -> s(add(sqr(X), dbl(X)))
asqr(X) -> sqr(X)
adbl(0) -> 0
adbl(s(X)) -> s(s(dbl(X)))
adbl(X) -> dbl(X)
aadd(0, X) -> mark(X)
aadd(s(X), Y) -> s(add(X, Y))
aadd(X1, X2) -> add(X1, X2)
afirst(0, X) -> nil
afirst(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z))
afirst(X1, X2) -> first(X1, X2)
mark(terms(X)) -> aterms(mark(X))
mark(sqr(X)) -> asqr(mark(X))
mark(add(X1, X2)) -> aadd(mark(X1), mark(X2))
mark(dbl(X)) -> adbl(mark(X))
mark(first(X1, X2)) -> afirst(mark(X1), mark(X2))
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(recip(X)) -> recip(mark(X))
mark(s(X)) -> s(X)
mark(0) -> 0
mark(nil) -> nil
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 9
↳Polynomial Ordering
MARK(sqr(X)) -> MARK(X)
aterms(N) -> cons(recip(asqr(mark(N))), terms(s(N)))
aterms(X) -> terms(X)
asqr(0) -> 0
asqr(s(X)) -> s(add(sqr(X), dbl(X)))
asqr(X) -> sqr(X)
adbl(0) -> 0
adbl(s(X)) -> s(s(dbl(X)))
adbl(X) -> dbl(X)
aadd(0, X) -> mark(X)
aadd(s(X), Y) -> s(add(X, Y))
aadd(X1, X2) -> add(X1, X2)
afirst(0, X) -> nil
afirst(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z))
afirst(X1, X2) -> first(X1, X2)
mark(terms(X)) -> aterms(mark(X))
mark(sqr(X)) -> asqr(mark(X))
mark(add(X1, X2)) -> aadd(mark(X1), mark(X2))
mark(dbl(X)) -> adbl(mark(X))
mark(first(X1, X2)) -> afirst(mark(X1), mark(X2))
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(recip(X)) -> recip(mark(X))
mark(s(X)) -> s(X)
mark(0) -> 0
mark(nil) -> nil
innermost
MARK(sqr(X)) -> MARK(X)
POL(MARK(x1)) = x1 POL(sqr(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 10
↳Dependency Graph
aterms(N) -> cons(recip(asqr(mark(N))), terms(s(N)))
aterms(X) -> terms(X)
asqr(0) -> 0
asqr(s(X)) -> s(add(sqr(X), dbl(X)))
asqr(X) -> sqr(X)
adbl(0) -> 0
adbl(s(X)) -> s(s(dbl(X)))
adbl(X) -> dbl(X)
aadd(0, X) -> mark(X)
aadd(s(X), Y) -> s(add(X, Y))
aadd(X1, X2) -> add(X1, X2)
afirst(0, X) -> nil
afirst(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z))
afirst(X1, X2) -> first(X1, X2)
mark(terms(X)) -> aterms(mark(X))
mark(sqr(X)) -> asqr(mark(X))
mark(add(X1, X2)) -> aadd(mark(X1), mark(X2))
mark(dbl(X)) -> adbl(mark(X))
mark(first(X1, X2)) -> afirst(mark(X1), mark(X2))
mark(cons(X1, X2)) -> cons(mark(X1), X2)
mark(recip(X)) -> recip(mark(X))
mark(s(X)) -> s(X)
mark(0) -> 0
mark(nil) -> nil
innermost