Term Rewriting System R:
[N, X, Y, X1, X2, Z]
terms(N) -> cons(recip(sqr(N)), nterms(ns(N)))
terms(X) -> nterms(X)
sqr(0) -> 0
sqr(s(X)) -> s(nadd(nsqr(activate(X)), ndbl(activate(X))))
sqr(X) -> nsqr(X)
dbl(0) -> 0
dbl(s(X)) -> s(ns(ndbl(activate(X))))
dbl(X) -> ndbl(X)
add(0, X) -> X
add(s(X), Y) -> s(nadd(activate(X), Y))
add(X1, X2) -> nadd(X1, X2)
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(activate(X), activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
s(X) -> ns(X)
activate(nterms(X)) -> terms(activate(X))
activate(ns(X)) -> s(X)
activate(nadd(X1, X2)) -> add(activate(X1), activate(X2))
activate(nsqr(X)) -> sqr(activate(X))
activate(ndbl(X)) -> dbl(activate(X))
activate(nfirst(X1, X2)) -> first(activate(X1), activate(X2))
activate(X) -> X

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

TERMS(N) -> SQR(N)
SQR(s(X)) -> S(nadd(nsqr(activate(X)), ndbl(activate(X))))
SQR(s(X)) -> ACTIVATE(X)
DBL(s(X)) -> S(ns(ndbl(activate(X))))
DBL(s(X)) -> ACTIVATE(X)
ADD(s(X), Y) -> S(nadd(activate(X), Y))
ADD(s(X), Y) -> ACTIVATE(X)
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(X)
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
ACTIVATE(nterms(X)) -> TERMS(activate(X))
ACTIVATE(nterms(X)) -> ACTIVATE(X)
ACTIVATE(ns(X)) -> S(X)
ACTIVATE(nadd(X1, X2)) -> ADD(activate(X1), activate(X2))
ACTIVATE(nadd(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(nadd(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nsqr(X)) -> SQR(activate(X))
ACTIVATE(nsqr(X)) -> ACTIVATE(X)
ACTIVATE(ndbl(X)) -> DBL(activate(X))
ACTIVATE(ndbl(X)) -> ACTIVATE(X)
ACTIVATE(nfirst(X1, X2)) -> FIRST(activate(X1), activate(X2))
ACTIVATE(nfirst(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(nfirst(X1, X2)) -> ACTIVATE(X2)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Polynomial Ordering


Dependency Pairs:

ACTIVATE(nfirst(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nfirst(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(ndbl(X)) -> ACTIVATE(X)
ACTIVATE(nsqr(X)) -> ACTIVATE(X)
ACTIVATE(nadd(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nadd(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(nterms(X)) -> ACTIVATE(X)


Rules:


terms(N) -> cons(recip(sqr(N)), nterms(ns(N)))
terms(X) -> nterms(X)
sqr(0) -> 0
sqr(s(X)) -> s(nadd(nsqr(activate(X)), ndbl(activate(X))))
sqr(X) -> nsqr(X)
dbl(0) -> 0
dbl(s(X)) -> s(ns(ndbl(activate(X))))
dbl(X) -> ndbl(X)
add(0, X) -> X
add(s(X), Y) -> s(nadd(activate(X), Y))
add(X1, X2) -> nadd(X1, X2)
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(activate(X), activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
s(X) -> ns(X)
activate(nterms(X)) -> terms(activate(X))
activate(ns(X)) -> s(X)
activate(nadd(X1, X2)) -> add(activate(X1), activate(X2))
activate(nsqr(X)) -> sqr(activate(X))
activate(ndbl(X)) -> dbl(activate(X))
activate(nfirst(X1, X2)) -> first(activate(X1), activate(X2))
activate(X) -> X


Strategy:

innermost




The following dependency pairs can be strictly oriented:

ACTIVATE(nadd(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nadd(X1, X2)) -> ACTIVATE(X1)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(n__terms(x1))=  x1  
  POL(n__sqr(x1))=  x1  
  POL(ACTIVATE(x1))=  x1  
  POL(n__add(x1, x2))=  1 + x1 + x2  
  POL(n__dbl(x1))=  x1  
  POL(n__first(x1, x2))=  x1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 2
Polynomial Ordering


Dependency Pairs:

ACTIVATE(nfirst(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nfirst(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(ndbl(X)) -> ACTIVATE(X)
ACTIVATE(nsqr(X)) -> ACTIVATE(X)
ACTIVATE(nterms(X)) -> ACTIVATE(X)


Rules:


terms(N) -> cons(recip(sqr(N)), nterms(ns(N)))
terms(X) -> nterms(X)
sqr(0) -> 0
sqr(s(X)) -> s(nadd(nsqr(activate(X)), ndbl(activate(X))))
sqr(X) -> nsqr(X)
dbl(0) -> 0
dbl(s(X)) -> s(ns(ndbl(activate(X))))
dbl(X) -> ndbl(X)
add(0, X) -> X
add(s(X), Y) -> s(nadd(activate(X), Y))
add(X1, X2) -> nadd(X1, X2)
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(activate(X), activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
s(X) -> ns(X)
activate(nterms(X)) -> terms(activate(X))
activate(ns(X)) -> s(X)
activate(nadd(X1, X2)) -> add(activate(X1), activate(X2))
activate(nsqr(X)) -> sqr(activate(X))
activate(ndbl(X)) -> dbl(activate(X))
activate(nfirst(X1, X2)) -> first(activate(X1), activate(X2))
activate(X) -> X


Strategy:

innermost




The following dependency pair can be strictly oriented:

ACTIVATE(nterms(X)) -> ACTIVATE(X)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(n__terms(x1))=  1 + x1  
  POL(n__sqr(x1))=  x1  
  POL(ACTIVATE(x1))=  x1  
  POL(n__dbl(x1))=  x1  
  POL(n__first(x1, x2))=  x1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 2
Polo
             ...
               →DP Problem 3
Polynomial Ordering


Dependency Pairs:

ACTIVATE(nfirst(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nfirst(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(ndbl(X)) -> ACTIVATE(X)
ACTIVATE(nsqr(X)) -> ACTIVATE(X)


Rules:


terms(N) -> cons(recip(sqr(N)), nterms(ns(N)))
terms(X) -> nterms(X)
sqr(0) -> 0
sqr(s(X)) -> s(nadd(nsqr(activate(X)), ndbl(activate(X))))
sqr(X) -> nsqr(X)
dbl(0) -> 0
dbl(s(X)) -> s(ns(ndbl(activate(X))))
dbl(X) -> ndbl(X)
add(0, X) -> X
add(s(X), Y) -> s(nadd(activate(X), Y))
add(X1, X2) -> nadd(X1, X2)
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(activate(X), activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
s(X) -> ns(X)
activate(nterms(X)) -> terms(activate(X))
activate(ns(X)) -> s(X)
activate(nadd(X1, X2)) -> add(activate(X1), activate(X2))
activate(nsqr(X)) -> sqr(activate(X))
activate(ndbl(X)) -> dbl(activate(X))
activate(nfirst(X1, X2)) -> first(activate(X1), activate(X2))
activate(X) -> X


Strategy:

innermost




The following dependency pairs can be strictly oriented:

ACTIVATE(nfirst(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nfirst(X1, X2)) -> ACTIVATE(X1)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(n__sqr(x1))=  x1  
  POL(ACTIVATE(x1))=  x1  
  POL(n__dbl(x1))=  x1  
  POL(n__first(x1, x2))=  1 + x1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 2
Polo
             ...
               →DP Problem 4
Polynomial Ordering


Dependency Pairs:

ACTIVATE(ndbl(X)) -> ACTIVATE(X)
ACTIVATE(nsqr(X)) -> ACTIVATE(X)


Rules:


terms(N) -> cons(recip(sqr(N)), nterms(ns(N)))
terms(X) -> nterms(X)
sqr(0) -> 0
sqr(s(X)) -> s(nadd(nsqr(activate(X)), ndbl(activate(X))))
sqr(X) -> nsqr(X)
dbl(0) -> 0
dbl(s(X)) -> s(ns(ndbl(activate(X))))
dbl(X) -> ndbl(X)
add(0, X) -> X
add(s(X), Y) -> s(nadd(activate(X), Y))
add(X1, X2) -> nadd(X1, X2)
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(activate(X), activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
s(X) -> ns(X)
activate(nterms(X)) -> terms(activate(X))
activate(ns(X)) -> s(X)
activate(nadd(X1, X2)) -> add(activate(X1), activate(X2))
activate(nsqr(X)) -> sqr(activate(X))
activate(ndbl(X)) -> dbl(activate(X))
activate(nfirst(X1, X2)) -> first(activate(X1), activate(X2))
activate(X) -> X


Strategy:

innermost




The following dependency pair can be strictly oriented:

ACTIVATE(ndbl(X)) -> ACTIVATE(X)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(n__sqr(x1))=  x1  
  POL(ACTIVATE(x1))=  x1  
  POL(n__dbl(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 2
Polo
             ...
               →DP Problem 5
Polynomial Ordering


Dependency Pair:

ACTIVATE(nsqr(X)) -> ACTIVATE(X)


Rules:


terms(N) -> cons(recip(sqr(N)), nterms(ns(N)))
terms(X) -> nterms(X)
sqr(0) -> 0
sqr(s(X)) -> s(nadd(nsqr(activate(X)), ndbl(activate(X))))
sqr(X) -> nsqr(X)
dbl(0) -> 0
dbl(s(X)) -> s(ns(ndbl(activate(X))))
dbl(X) -> ndbl(X)
add(0, X) -> X
add(s(X), Y) -> s(nadd(activate(X), Y))
add(X1, X2) -> nadd(X1, X2)
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(activate(X), activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
s(X) -> ns(X)
activate(nterms(X)) -> terms(activate(X))
activate(ns(X)) -> s(X)
activate(nadd(X1, X2)) -> add(activate(X1), activate(X2))
activate(nsqr(X)) -> sqr(activate(X))
activate(ndbl(X)) -> dbl(activate(X))
activate(nfirst(X1, X2)) -> first(activate(X1), activate(X2))
activate(X) -> X


Strategy:

innermost




The following dependency pair can be strictly oriented:

ACTIVATE(nsqr(X)) -> ACTIVATE(X)


There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(n__sqr(x1))=  1 + x1  
  POL(ACTIVATE(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 2
Polo
             ...
               →DP Problem 6
Dependency Graph


Dependency Pair:


Rules:


terms(N) -> cons(recip(sqr(N)), nterms(ns(N)))
terms(X) -> nterms(X)
sqr(0) -> 0
sqr(s(X)) -> s(nadd(nsqr(activate(X)), ndbl(activate(X))))
sqr(X) -> nsqr(X)
dbl(0) -> 0
dbl(s(X)) -> s(ns(ndbl(activate(X))))
dbl(X) -> ndbl(X)
add(0, X) -> X
add(s(X), Y) -> s(nadd(activate(X), Y))
add(X1, X2) -> nadd(X1, X2)
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(activate(X), activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
s(X) -> ns(X)
activate(nterms(X)) -> terms(activate(X))
activate(ns(X)) -> s(X)
activate(nadd(X1, X2)) -> add(activate(X1), activate(X2))
activate(nsqr(X)) -> sqr(activate(X))
activate(ndbl(X)) -> dbl(activate(X))
activate(nfirst(X1, X2)) -> first(activate(X1), activate(X2))
activate(X) -> X


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:02 minutes