Term Rewriting System R:
[X]
ag(X) -> ah(X)
ag(X) -> g(X)
ac -> d
ac -> c
ah(d) -> ag(c)
ah(X) -> h(X)
mark(g(X)) -> ag(X)
mark(h(X)) -> ah(X)
mark(c) -> ac
mark(d) -> d

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

AG(X) -> AH(X)
AH(d) -> AG(c)
MARK(g(X)) -> AG(X)
MARK(h(X)) -> AH(X)
MARK(c) -> AC

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering


Dependency Pairs:

AH(d) -> AG(c)
AG(X) -> AH(X)


Rules:


ag(X) -> ah(X)
ag(X) -> g(X)
ac -> d
ac -> c
ah(d) -> ag(c)
ah(X) -> h(X)
mark(g(X)) -> ag(X)
mark(h(X)) -> ah(X)
mark(c) -> ac
mark(d) -> d


Strategy:

innermost




The following dependency pairs can be strictly oriented:

AH(d) -> AG(c)
AG(X) -> AH(X)


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
d > AG > AH
d > c

resulting in one new DP problem.
Used Argument Filtering System:
AG(x1) -> AG(x1)
AH(x1) -> AH(x1)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 2
Dependency Graph


Dependency Pair:


Rules:


ag(X) -> ah(X)
ag(X) -> g(X)
ac -> d
ac -> c
ah(d) -> ag(c)
ah(X) -> h(X)
mark(g(X)) -> ag(X)
mark(h(X)) -> ah(X)
mark(c) -> ac
mark(d) -> d


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes