Term Rewriting System R:
[X]
ag(X) -> ah(X)
ag(X) -> g(X)
ac -> d
ac -> c
ah(d) -> ag(c)
ah(X) -> h(X)
mark(g(X)) -> ag(X)
mark(h(X)) -> ah(X)
mark(c) -> ac
mark(d) -> d
Innermost Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
AG(X) -> AH(X)
AH(d) -> AG(c)
MARK(g(X)) -> AG(X)
MARK(h(X)) -> AH(X)
MARK(c) -> AC
Furthermore, R contains one SCC.
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
Dependency Pairs:
AH(d) -> AG(c)
AG(X) -> AH(X)
Rules:
ag(X) -> ah(X)
ag(X) -> g(X)
ac -> d
ac -> c
ah(d) -> ag(c)
ah(X) -> h(X)
mark(g(X)) -> ag(X)
mark(h(X)) -> ah(X)
mark(c) -> ac
mark(d) -> d
Strategy:
innermost
The following dependency pairs can be strictly oriented:
AH(d) -> AG(c)
AG(X) -> AH(X)
There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
d > AG > AH
d > c
resulting in one new DP problem.
Used Argument Filtering System: AG(x1) -> AG(x1)
AH(x1) -> AH(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Dependency Graph
Dependency Pair:
Rules:
ag(X) -> ah(X)
ag(X) -> g(X)
ac -> d
ac -> c
ah(d) -> ag(c)
ah(X) -> h(X)
mark(g(X)) -> ag(X)
mark(h(X)) -> ah(X)
mark(c) -> ac
mark(d) -> d
Strategy:
innermost
Using the Dependency Graph resulted in no new DP problems.
Innermost Termination of R successfully shown.
Duration:
0:00 minutes