Term Rewriting System R:
[X]
ag(X) -> ah(X)
ag(X) -> g(X)
ac -> d
ac -> c
ah(d) -> ag(c)
ah(X) -> h(X)
mark(g(X)) -> ag(X)
mark(h(X)) -> ah(X)
mark(c) -> ac
mark(d) -> d
Innermost Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
AG(X) -> AH(X)
AH(d) -> AG(c)
MARK(g(X)) -> AG(X)
MARK(h(X)) -> AH(X)
MARK(c) -> AC
Furthermore, R contains one SCC.
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
Dependency Pairs:
AH(d) -> AG(c)
AG(X) -> AH(X)
Rules:
ag(X) -> ah(X)
ag(X) -> g(X)
ac -> d
ac -> c
ah(d) -> ag(c)
ah(X) -> h(X)
mark(g(X)) -> ag(X)
mark(h(X)) -> ah(X)
mark(c) -> ac
mark(d) -> d
Strategy:
innermost
The following dependency pair can be strictly oriented:
AH(d) -> AG(c)
There are no usable rules for innermost that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
POL(A__G(x1)) | = x1 |
POL(c) | = 0 |
POL(d) | = 1 |
POL(A__H(x1)) | = x1 |
resulting in one new DP problem.
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Dependency Graph
Dependency Pair:
AG(X) -> AH(X)
Rules:
ag(X) -> ah(X)
ag(X) -> g(X)
ac -> d
ac -> c
ah(d) -> ag(c)
ah(X) -> h(X)
mark(g(X)) -> ag(X)
mark(h(X)) -> ah(X)
mark(c) -> ac
mark(d) -> d
Strategy:
innermost
Using the Dependency Graph resulted in no new DP problems.
Innermost Termination of R successfully shown.
Duration:
0:00 minutes