R
↳Dependency Pair Analysis
ACTIVE(g(X)) -> H(X)
ACTIVE(h(d)) -> G(c)
PROPER(g(X)) -> G(proper(X))
PROPER(g(X)) -> PROPER(X)
PROPER(h(X)) -> H(proper(X))
PROPER(h(X)) -> PROPER(X)
G(ok(X)) -> G(X)
H(ok(X)) -> H(X)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
G(ok(X)) -> G(X)
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
one new Dependency Pair is created:
G(ok(X)) -> G(X)
G(ok(ok(X''))) -> G(ok(X''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 5
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
G(ok(ok(X''))) -> G(ok(X''))
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
one new Dependency Pair is created:
G(ok(ok(X''))) -> G(ok(X''))
G(ok(ok(ok(X'''')))) -> G(ok(ok(X'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 5
↳FwdInst
...
→DP Problem 6
↳Polynomial Ordering
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
G(ok(ok(ok(X'''')))) -> G(ok(ok(X'''')))
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
G(ok(ok(ok(X'''')))) -> G(ok(ok(X'''')))
POL(G(x1)) = 1 + x1 POL(ok(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 5
↳FwdInst
...
→DP Problem 7
↳Dependency Graph
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
H(ok(X)) -> H(X)
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
one new Dependency Pair is created:
H(ok(X)) -> H(X)
H(ok(ok(X''))) -> H(ok(X''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 8
↳Forward Instantiation Transformation
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
H(ok(ok(X''))) -> H(ok(X''))
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
one new Dependency Pair is created:
H(ok(ok(X''))) -> H(ok(X''))
H(ok(ok(ok(X'''')))) -> H(ok(ok(X'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 8
↳FwdInst
...
→DP Problem 9
↳Polynomial Ordering
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
H(ok(ok(ok(X'''')))) -> H(ok(ok(X'''')))
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
H(ok(ok(ok(X'''')))) -> H(ok(ok(X'''')))
POL(H(x1)) = 1 + x1 POL(ok(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 8
↳FwdInst
...
→DP Problem 10
↳Dependency Graph
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Forward Instantiation Transformation
→DP Problem 4
↳Nar
PROPER(h(X)) -> PROPER(X)
PROPER(g(X)) -> PROPER(X)
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
two new Dependency Pairs are created:
PROPER(g(X)) -> PROPER(X)
PROPER(g(g(X''))) -> PROPER(g(X''))
PROPER(g(h(X''))) -> PROPER(h(X''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 11
↳Forward Instantiation Transformation
→DP Problem 4
↳Nar
PROPER(g(h(X''))) -> PROPER(h(X''))
PROPER(g(g(X''))) -> PROPER(g(X''))
PROPER(h(X)) -> PROPER(X)
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
three new Dependency Pairs are created:
PROPER(h(X)) -> PROPER(X)
PROPER(h(h(X''))) -> PROPER(h(X''))
PROPER(h(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(h(g(h(X'''')))) -> PROPER(g(h(X'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 11
↳FwdInst
...
→DP Problem 12
↳Forward Instantiation Transformation
→DP Problem 4
↳Nar
PROPER(h(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(g(g(X''))) -> PROPER(g(X''))
PROPER(h(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(h(h(X''))) -> PROPER(h(X''))
PROPER(g(h(X''))) -> PROPER(h(X''))
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
two new Dependency Pairs are created:
PROPER(g(g(X''))) -> PROPER(g(X''))
PROPER(g(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(g(g(h(X'''')))) -> PROPER(g(h(X'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 11
↳FwdInst
...
→DP Problem 13
↳Forward Instantiation Transformation
→DP Problem 4
↳Nar
PROPER(g(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(g(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(h(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(h(h(X''))) -> PROPER(h(X''))
PROPER(g(h(X''))) -> PROPER(h(X''))
PROPER(h(g(h(X'''')))) -> PROPER(g(h(X'''')))
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
three new Dependency Pairs are created:
PROPER(g(h(X''))) -> PROPER(h(X''))
PROPER(g(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(g(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(g(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 11
↳FwdInst
...
→DP Problem 14
↳Forward Instantiation Transformation
→DP Problem 4
↳Nar
PROPER(g(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(g(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(h(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(g(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(h(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(h(h(X''))) -> PROPER(h(X''))
PROPER(g(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(g(g(h(X'''')))) -> PROPER(g(h(X'''')))
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
three new Dependency Pairs are created:
PROPER(h(h(X''))) -> PROPER(h(X''))
PROPER(h(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(h(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(h(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 11
↳FwdInst
...
→DP Problem 15
↳Forward Instantiation Transformation
→DP Problem 4
↳Nar
PROPER(h(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(g(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(g(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(g(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(h(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(h(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(h(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(g(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(h(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(g(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
two new Dependency Pairs are created:
PROPER(h(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(h(g(g(g(X''''''))))) -> PROPER(g(g(g(X''''''))))
PROPER(h(g(g(h(X''''''))))) -> PROPER(g(g(h(X''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 11
↳FwdInst
...
→DP Problem 16
↳Forward Instantiation Transformation
→DP Problem 4
↳Nar
PROPER(g(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(h(g(g(h(X''''''))))) -> PROPER(g(g(h(X''''''))))
PROPER(g(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(g(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(g(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(h(g(g(g(X''''''))))) -> PROPER(g(g(g(X''''''))))
PROPER(h(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(h(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(g(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(h(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(h(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
three new Dependency Pairs are created:
PROPER(h(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(h(g(h(h(X''''''))))) -> PROPER(g(h(h(X''''''))))
PROPER(h(g(h(g(g(X'''''''')))))) -> PROPER(g(h(g(g(X'''''''')))))
PROPER(h(g(h(g(h(X'''''''')))))) -> PROPER(g(h(g(h(X'''''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 11
↳FwdInst
...
→DP Problem 17
↳Polynomial Ordering
→DP Problem 4
↳Nar
PROPER(h(g(h(g(h(X'''''''')))))) -> PROPER(g(h(g(h(X'''''''')))))
PROPER(h(g(h(g(g(X'''''''')))))) -> PROPER(g(h(g(g(X'''''''')))))
PROPER(h(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(h(g(g(h(X''''''))))) -> PROPER(g(g(h(X''''''))))
PROPER(g(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(g(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(g(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(h(g(g(g(X''''''))))) -> PROPER(g(g(g(X''''''))))
PROPER(h(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(h(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(g(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(h(g(h(h(X''''''))))) -> PROPER(g(h(h(X''''''))))
PROPER(g(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
PROPER(h(g(h(g(h(X'''''''')))))) -> PROPER(g(h(g(h(X'''''''')))))
PROPER(h(g(h(g(g(X'''''''')))))) -> PROPER(g(h(g(g(X'''''''')))))
PROPER(h(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
PROPER(h(g(g(h(X''''''))))) -> PROPER(g(g(h(X''''''))))
PROPER(h(g(g(g(X''''''))))) -> PROPER(g(g(g(X''''''))))
PROPER(h(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(h(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(h(g(h(h(X''''''))))) -> PROPER(g(h(h(X''''''))))
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
POL(g(x1)) = x1 POL(PROPER(x1)) = 1 + x1 POL(h(x1)) = 1 + x1 POL(ok(x1)) = 0
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 11
↳FwdInst
...
→DP Problem 18
↳Dependency Graph
→DP Problem 4
↳Nar
PROPER(g(h(g(g(X''''''))))) -> PROPER(h(g(g(X''''''))))
PROPER(g(g(h(X'''')))) -> PROPER(g(h(X'''')))
PROPER(g(g(g(X'''')))) -> PROPER(g(g(X'''')))
PROPER(g(h(h(X'''')))) -> PROPER(h(h(X'''')))
PROPER(g(h(g(h(X''''''))))) -> PROPER(h(g(h(X''''''))))
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 11
↳FwdInst
...
→DP Problem 19
↳Polynomial Ordering
→DP Problem 4
↳Nar
PROPER(g(g(g(X'''')))) -> PROPER(g(g(X'''')))
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
PROPER(g(g(g(X'''')))) -> PROPER(g(g(X'''')))
g(ok(X)) -> ok(g(X))
POL(g(x1)) = 1 + x1 POL(PROPER(x1)) = 1 + x1 POL(ok(x1)) = 0
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 11
↳FwdInst
...
→DP Problem 20
↳Dependency Graph
→DP Problem 4
↳Nar
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Narrowing Transformation
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
four new Dependency Pairs are created:
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
TOP(mark(h(X''))) -> TOP(h(proper(X'')))
TOP(mark(c)) -> TOP(ok(c))
TOP(mark(d)) -> TOP(ok(d))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
→DP Problem 21
↳Narrowing Transformation
TOP(mark(d)) -> TOP(ok(d))
TOP(mark(c)) -> TOP(ok(c))
TOP(mark(h(X''))) -> TOP(h(proper(X'')))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
TOP(ok(X)) -> TOP(active(X))
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
three new Dependency Pairs are created:
TOP(ok(X)) -> TOP(active(X))
TOP(ok(g(X''))) -> TOP(mark(h(X'')))
TOP(ok(c)) -> TOP(mark(d))
TOP(ok(h(d))) -> TOP(mark(g(c)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
→DP Problem 21
↳Nar
...
→DP Problem 22
↳Narrowing Transformation
TOP(ok(h(d))) -> TOP(mark(g(c)))
TOP(ok(g(X''))) -> TOP(mark(h(X'')))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
TOP(mark(h(X''))) -> TOP(h(proper(X'')))
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
four new Dependency Pairs are created:
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
TOP(mark(g(g(X')))) -> TOP(g(g(proper(X'))))
TOP(mark(g(h(X')))) -> TOP(g(h(proper(X'))))
TOP(mark(g(c))) -> TOP(g(ok(c)))
TOP(mark(g(d))) -> TOP(g(ok(d)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
→DP Problem 21
↳Nar
...
→DP Problem 23
↳Rewriting Transformation
TOP(mark(g(d))) -> TOP(g(ok(d)))
TOP(mark(g(c))) -> TOP(g(ok(c)))
TOP(mark(g(h(X')))) -> TOP(g(h(proper(X'))))
TOP(mark(g(g(X')))) -> TOP(g(g(proper(X'))))
TOP(ok(g(X''))) -> TOP(mark(h(X'')))
TOP(mark(h(X''))) -> TOP(h(proper(X'')))
TOP(ok(h(d))) -> TOP(mark(g(c)))
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
one new Dependency Pair is created:
TOP(mark(g(c))) -> TOP(g(ok(c)))
TOP(mark(g(c))) -> TOP(ok(g(c)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
→DP Problem 21
↳Nar
...
→DP Problem 24
↳Rewriting Transformation
TOP(mark(g(c))) -> TOP(ok(g(c)))
TOP(mark(g(h(X')))) -> TOP(g(h(proper(X'))))
TOP(ok(h(d))) -> TOP(mark(g(c)))
TOP(mark(g(g(X')))) -> TOP(g(g(proper(X'))))
TOP(ok(g(X''))) -> TOP(mark(h(X'')))
TOP(mark(h(X''))) -> TOP(h(proper(X'')))
TOP(mark(g(d))) -> TOP(g(ok(d)))
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
one new Dependency Pair is created:
TOP(mark(g(d))) -> TOP(g(ok(d)))
TOP(mark(g(d))) -> TOP(ok(g(d)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
→DP Problem 21
↳Nar
...
→DP Problem 25
↳Narrowing Transformation
TOP(mark(g(d))) -> TOP(ok(g(d)))
TOP(mark(g(h(X')))) -> TOP(g(h(proper(X'))))
TOP(mark(g(g(X')))) -> TOP(g(g(proper(X'))))
TOP(ok(h(d))) -> TOP(mark(g(c)))
TOP(mark(h(X''))) -> TOP(h(proper(X'')))
TOP(ok(g(X''))) -> TOP(mark(h(X'')))
TOP(mark(g(c))) -> TOP(ok(g(c)))
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
four new Dependency Pairs are created:
TOP(mark(h(X''))) -> TOP(h(proper(X'')))
TOP(mark(h(g(X')))) -> TOP(h(g(proper(X'))))
TOP(mark(h(h(X')))) -> TOP(h(h(proper(X'))))
TOP(mark(h(c))) -> TOP(h(ok(c)))
TOP(mark(h(d))) -> TOP(h(ok(d)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
→DP Problem 21
↳Nar
...
→DP Problem 26
↳Rewriting Transformation
TOP(mark(h(d))) -> TOP(h(ok(d)))
TOP(mark(h(c))) -> TOP(h(ok(c)))
TOP(mark(h(h(X')))) -> TOP(h(h(proper(X'))))
TOP(mark(h(g(X')))) -> TOP(h(g(proper(X'))))
TOP(mark(g(c))) -> TOP(ok(g(c)))
TOP(mark(g(h(X')))) -> TOP(g(h(proper(X'))))
TOP(ok(h(d))) -> TOP(mark(g(c)))
TOP(mark(g(g(X')))) -> TOP(g(g(proper(X'))))
TOP(ok(g(X''))) -> TOP(mark(h(X'')))
TOP(mark(g(d))) -> TOP(ok(g(d)))
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
one new Dependency Pair is created:
TOP(mark(h(c))) -> TOP(h(ok(c)))
TOP(mark(h(c))) -> TOP(ok(h(c)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
→DP Problem 21
↳Nar
...
→DP Problem 27
↳Rewriting Transformation
TOP(mark(h(h(X')))) -> TOP(h(h(proper(X'))))
TOP(mark(h(g(X')))) -> TOP(h(g(proper(X'))))
TOP(mark(g(d))) -> TOP(ok(g(d)))
TOP(mark(g(c))) -> TOP(ok(g(c)))
TOP(mark(g(h(X')))) -> TOP(g(h(proper(X'))))
TOP(ok(h(d))) -> TOP(mark(g(c)))
TOP(mark(g(g(X')))) -> TOP(g(g(proper(X'))))
TOP(ok(g(X''))) -> TOP(mark(h(X'')))
TOP(mark(h(d))) -> TOP(h(ok(d)))
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
one new Dependency Pair is created:
TOP(mark(h(d))) -> TOP(h(ok(d)))
TOP(mark(h(d))) -> TOP(ok(h(d)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
→DP Problem 21
↳Nar
...
→DP Problem 28
↳Forward Instantiation Transformation
TOP(mark(h(d))) -> TOP(ok(h(d)))
TOP(mark(h(g(X')))) -> TOP(h(g(proper(X'))))
TOP(mark(g(d))) -> TOP(ok(g(d)))
TOP(mark(g(c))) -> TOP(ok(g(c)))
TOP(mark(g(h(X')))) -> TOP(g(h(proper(X'))))
TOP(ok(h(d))) -> TOP(mark(g(c)))
TOP(mark(g(g(X')))) -> TOP(g(g(proper(X'))))
TOP(ok(g(X''))) -> TOP(mark(h(X'')))
TOP(mark(h(h(X')))) -> TOP(h(h(proper(X'))))
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
three new Dependency Pairs are created:
TOP(ok(g(X''))) -> TOP(mark(h(X'')))
TOP(ok(g(g(X'''')))) -> TOP(mark(h(g(X''''))))
TOP(ok(g(h(X'''')))) -> TOP(mark(h(h(X''''))))
TOP(ok(g(d))) -> TOP(mark(h(d)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
→DP Problem 21
↳Nar
...
→DP Problem 29
↳Narrowing Transformation
TOP(ok(g(h(X'''')))) -> TOP(mark(h(h(X''''))))
TOP(ok(g(g(X'''')))) -> TOP(mark(h(g(X''''))))
TOP(mark(h(h(X')))) -> TOP(h(h(proper(X'))))
TOP(mark(h(g(X')))) -> TOP(h(g(proper(X'))))
TOP(ok(g(d))) -> TOP(mark(h(d)))
TOP(mark(g(d))) -> TOP(ok(g(d)))
TOP(mark(g(h(X')))) -> TOP(g(h(proper(X'))))
TOP(mark(g(g(X')))) -> TOP(g(g(proper(X'))))
TOP(ok(h(d))) -> TOP(mark(g(c)))
TOP(mark(h(d))) -> TOP(ok(h(d)))
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
no new Dependency Pairs are created.
TOP(ok(h(d))) -> TOP(mark(g(c)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
→DP Problem 21
↳Nar
...
→DP Problem 30
↳Narrowing Transformation
TOP(ok(g(g(X'''')))) -> TOP(mark(h(g(X''''))))
TOP(mark(h(h(X')))) -> TOP(h(h(proper(X'))))
TOP(mark(h(g(X')))) -> TOP(h(g(proper(X'))))
TOP(ok(g(d))) -> TOP(mark(h(d)))
TOP(mark(g(d))) -> TOP(ok(g(d)))
TOP(mark(g(h(X')))) -> TOP(g(h(proper(X'))))
TOP(mark(g(g(X')))) -> TOP(g(g(proper(X'))))
TOP(ok(g(h(X'''')))) -> TOP(mark(h(h(X''''))))
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
no new Dependency Pairs are created.
TOP(ok(g(d))) -> TOP(mark(h(d)))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
→DP Problem 21
↳Nar
...
→DP Problem 31
↳Polynomial Ordering
TOP(ok(g(h(X'''')))) -> TOP(mark(h(h(X''''))))
TOP(mark(h(h(X')))) -> TOP(h(h(proper(X'))))
TOP(mark(h(g(X')))) -> TOP(h(g(proper(X'))))
TOP(mark(g(h(X')))) -> TOP(g(h(proper(X'))))
TOP(mark(g(g(X')))) -> TOP(g(g(proper(X'))))
TOP(ok(g(g(X'''')))) -> TOP(mark(h(g(X''''))))
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
TOP(ok(g(h(X'''')))) -> TOP(mark(h(h(X''''))))
TOP(ok(g(g(X'''')))) -> TOP(mark(h(g(X''''))))
h(ok(X)) -> ok(h(X))
g(ok(X)) -> ok(g(X))
POL(proper(x1)) = 0 POL(c) = 0 POL(g(x1)) = 1 POL(d) = 0 POL(h(x1)) = 0 POL(mark(x1)) = x1 POL(ok(x1)) = x1 POL(TOP(x1)) = x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
→DP Problem 21
↳Nar
...
→DP Problem 32
↳Forward Instantiation Transformation
TOP(mark(h(h(X')))) -> TOP(h(h(proper(X'))))
TOP(mark(h(g(X')))) -> TOP(h(g(proper(X'))))
TOP(mark(g(h(X')))) -> TOP(g(h(proper(X'))))
TOP(mark(g(g(X')))) -> TOP(g(g(proper(X'))))
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
no new Dependency Pairs are created.
TOP(mark(g(g(X')))) -> TOP(g(g(proper(X'))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
→DP Problem 21
↳Nar
...
→DP Problem 33
↳Forward Instantiation Transformation
TOP(mark(h(g(X')))) -> TOP(h(g(proper(X'))))
TOP(mark(g(h(X')))) -> TOP(g(h(proper(X'))))
TOP(mark(h(h(X')))) -> TOP(h(h(proper(X'))))
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
no new Dependency Pairs are created.
TOP(mark(g(h(X')))) -> TOP(g(h(proper(X'))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
→DP Problem 21
↳Nar
...
→DP Problem 34
↳Forward Instantiation Transformation
TOP(mark(h(h(X')))) -> TOP(h(h(proper(X'))))
TOP(mark(h(g(X')))) -> TOP(h(g(proper(X'))))
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
no new Dependency Pairs are created.
TOP(mark(h(g(X')))) -> TOP(h(g(proper(X'))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳FwdInst
→DP Problem 4
↳Nar
→DP Problem 21
↳Nar
...
→DP Problem 35
↳Forward Instantiation Transformation
TOP(mark(h(h(X')))) -> TOP(h(h(proper(X'))))
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
no new Dependency Pairs are created.
TOP(mark(h(h(X')))) -> TOP(h(h(proper(X'))))