Term Rewriting System R:
[X]
active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

ACTIVE(g(X)) -> H(X)
ACTIVE(h(d)) -> G(c)
PROPER(g(X)) -> G(proper(X))
PROPER(g(X)) -> PROPER(X)
PROPER(h(X)) -> H(proper(X))
PROPER(h(X)) -> PROPER(X)
G(ok(X)) -> G(X)
H(ok(X)) -> H(X)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)

Furthermore, R contains four SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
Nar


Dependency Pair:

G(ok(X)) -> G(X)


Rules:


active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

G(ok(X)) -> G(X)


There are no usable rules for innermost that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
G(x1) -> G(x1)
ok(x1) -> ok(x1)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 5
Dependency Graph
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
Nar


Dependency Pair:


Rules:


active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Argument Filtering and Ordering
       →DP Problem 3
AFS
       →DP Problem 4
Nar


Dependency Pair:

H(ok(X)) -> H(X)


Rules:


active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

H(ok(X)) -> H(X)


There are no usable rules for innermost that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
H(x1) -> H(x1)
ok(x1) -> ok(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 6
Dependency Graph
       →DP Problem 3
AFS
       →DP Problem 4
Nar


Dependency Pair:


Rules:


active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Argument Filtering and Ordering
       →DP Problem 4
Nar


Dependency Pairs:

PROPER(h(X)) -> PROPER(X)
PROPER(g(X)) -> PROPER(X)


Rules:


active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

PROPER(h(X)) -> PROPER(X)
PROPER(g(X)) -> PROPER(X)


There are no usable rules for innermost that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
PROPER(x1) -> PROPER(x1)
h(x1) -> h(x1)
g(x1) -> g(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
           →DP Problem 7
Dependency Graph
       →DP Problem 4
Nar


Dependency Pair:


Rules:


active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
Narrowing Transformation


Dependency Pairs:

TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))


Rules:


active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

TOP(mark(X)) -> TOP(proper(X))
four new Dependency Pairs are created:

TOP(mark(g(X''))) -> TOP(g(proper(X'')))
TOP(mark(h(X''))) -> TOP(h(proper(X'')))
TOP(mark(c)) -> TOP(ok(c))
TOP(mark(d)) -> TOP(ok(d))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
Nar
           →DP Problem 8
Narrowing Transformation


Dependency Pairs:

TOP(mark(d)) -> TOP(ok(d))
TOP(mark(c)) -> TOP(ok(c))
TOP(mark(h(X''))) -> TOP(h(proper(X'')))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
TOP(ok(X)) -> TOP(active(X))


Rules:


active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

TOP(ok(X)) -> TOP(active(X))
three new Dependency Pairs are created:

TOP(ok(g(X''))) -> TOP(mark(h(X'')))
TOP(ok(c)) -> TOP(mark(d))
TOP(ok(h(d))) -> TOP(mark(g(c)))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
Nar
           →DP Problem 8
Nar
             ...
               →DP Problem 9
Argument Filtering and Ordering


Dependency Pairs:

TOP(ok(h(d))) -> TOP(mark(g(c)))
TOP(ok(g(X''))) -> TOP(mark(h(X'')))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
TOP(mark(h(X''))) -> TOP(h(proper(X'')))


Rules:


active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

TOP(ok(h(d))) -> TOP(mark(g(c)))


The following usable rules for innermost can be oriented:

g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)


Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
d > c
{mark, ok, h, proper, g}

resulting in one new DP problem.
Used Argument Filtering System:
TOP(x1) -> TOP(x1)
ok(x1) -> ok(x1)
mark(x1) -> mark(x1)
h(x1) -> h(x1)
g(x1) -> g(x1)
proper(x1) -> proper(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
Nar
           →DP Problem 8
Nar
             ...
               →DP Problem 10
Argument Filtering and Ordering


Dependency Pairs:

TOP(ok(g(X''))) -> TOP(mark(h(X'')))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
TOP(mark(h(X''))) -> TOP(h(proper(X'')))


Rules:


active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

TOP(ok(g(X''))) -> TOP(mark(h(X'')))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
TOP(mark(h(X''))) -> TOP(h(proper(X'')))


The following usable rules for innermost can be oriented:

h(ok(X)) -> ok(h(X))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))


Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
g > mark
g > h

resulting in one new DP problem.
Used Argument Filtering System:
TOP(x1) -> TOP(x1)
mark(x1) -> mark(x1)
h(x1) -> h(x1)
proper(x1) -> x1
ok(x1) -> x1
g(x1) -> g(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
Nar
           →DP Problem 8
Nar
             ...
               →DP Problem 11
Dependency Graph


Dependency Pair:


Rules:


active(g(X)) -> mark(h(X))
active(c) -> mark(d)
active(h(d)) -> mark(g(c))
proper(g(X)) -> g(proper(X))
proper(h(X)) -> h(proper(X))
proper(c) -> ok(c)
proper(d) -> ok(d)
g(ok(X)) -> ok(g(X))
h(ok(X)) -> ok(h(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:03 minutes