Term Rewriting System R:
[X, Z, Y, X1, X2]
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))
SEL(s(X), cons(Y, Z)) -> ACTIVATE(Z)
ACTIVATE(nfrom(X)) -> FROM(X)
ACTIVATE(nfirst(X1, X2)) -> FIRST(X1, X2)

Furthermore, R contains two SCCs.


   R
DPs
       →DP Problem 1
Forward Instantiation Transformation
       →DP Problem 2
Nar


Dependency Pairs:

ACTIVATE(nfirst(X1, X2)) -> FIRST(X1, X2)
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
one new Dependency Pair is created:

FIRST(s(X), cons(Y, nfirst(X1'', X2''))) -> ACTIVATE(nfirst(X1'', X2''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 3
Forward Instantiation Transformation
       →DP Problem 2
Nar


Dependency Pairs:

FIRST(s(X), cons(Y, nfirst(X1'', X2''))) -> ACTIVATE(nfirst(X1'', X2''))
ACTIVATE(nfirst(X1, X2)) -> FIRST(X1, X2)


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

ACTIVATE(nfirst(X1, X2)) -> FIRST(X1, X2)
one new Dependency Pair is created:

ACTIVATE(nfirst(s(X''), cons(Y'', nfirst(X1'''', X2'''')))) -> FIRST(s(X''), cons(Y'', nfirst(X1'''', X2'''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 3
FwdInst
             ...
               →DP Problem 4
Forward Instantiation Transformation
       →DP Problem 2
Nar


Dependency Pairs:

ACTIVATE(nfirst(s(X''), cons(Y'', nfirst(X1'''', X2'''')))) -> FIRST(s(X''), cons(Y'', nfirst(X1'''', X2'''')))
FIRST(s(X), cons(Y, nfirst(X1'', X2''))) -> ACTIVATE(nfirst(X1'', X2''))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

FIRST(s(X), cons(Y, nfirst(X1'', X2''))) -> ACTIVATE(nfirst(X1'', X2''))
one new Dependency Pair is created:

FIRST(s(X), cons(Y, nfirst(s(X''''), cons(Y'''', nfirst(X1'''''', X2''''''))))) -> ACTIVATE(nfirst(s(X''''), cons(Y'''', nfirst(X1'''''', X2''''''))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 3
FwdInst
             ...
               →DP Problem 5
Forward Instantiation Transformation
       →DP Problem 2
Nar


Dependency Pairs:

FIRST(s(X), cons(Y, nfirst(s(X''''), cons(Y'''', nfirst(X1'''''', X2''''''))))) -> ACTIVATE(nfirst(s(X''''), cons(Y'''', nfirst(X1'''''', X2''''''))))
ACTIVATE(nfirst(s(X''), cons(Y'', nfirst(X1'''', X2'''')))) -> FIRST(s(X''), cons(Y'', nfirst(X1'''', X2'''')))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

ACTIVATE(nfirst(s(X''), cons(Y'', nfirst(X1'''', X2'''')))) -> FIRST(s(X''), cons(Y'', nfirst(X1'''', X2'''')))
one new Dependency Pair is created:

ACTIVATE(nfirst(s(X'''), cons(Y''', nfirst(s(X''''''), cons(Y'''''', nfirst(X1'''''''', X2'''''''')))))) -> FIRST(s(X'''), cons(Y''', nfirst(s(X''''''), cons(Y'''''', nfirst(X1'''''''', X2'''''''')))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 3
FwdInst
             ...
               →DP Problem 6
Argument Filtering and Ordering
       →DP Problem 2
Nar


Dependency Pairs:

ACTIVATE(nfirst(s(X'''), cons(Y''', nfirst(s(X''''''), cons(Y'''''', nfirst(X1'''''''', X2'''''''')))))) -> FIRST(s(X'''), cons(Y''', nfirst(s(X''''''), cons(Y'''''', nfirst(X1'''''''', X2'''''''')))))
FIRST(s(X), cons(Y, nfirst(s(X''''), cons(Y'''', nfirst(X1'''''', X2''''''))))) -> ACTIVATE(nfirst(s(X''''), cons(Y'''', nfirst(X1'''''', X2''''''))))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X


Strategy:

innermost




The following dependency pairs can be strictly oriented:

ACTIVATE(nfirst(s(X'''), cons(Y''', nfirst(s(X''''''), cons(Y'''''', nfirst(X1'''''''', X2'''''''')))))) -> FIRST(s(X'''), cons(Y''', nfirst(s(X''''''), cons(Y'''''', nfirst(X1'''''''', X2'''''''')))))
FIRST(s(X), cons(Y, nfirst(s(X''''), cons(Y'''', nfirst(X1'''''', X2''''''))))) -> ACTIVATE(nfirst(s(X''''), cons(Y'''', nfirst(X1'''''', X2''''''))))


There are no usable rules for innermost that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
FIRST(x1, x2) -> x2
cons(x1, x2) -> cons(x1, x2)
ACTIVATE(x1) -> x1
nfirst(x1, x2) -> nfirst(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 3
FwdInst
             ...
               →DP Problem 7
Dependency Graph
       →DP Problem 2
Nar


Dependency Pair:


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Narrowing Transformation


Dependency Pair:

SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))
three new Dependency Pairs are created:

SEL(s(X), cons(Y, nfrom(X''))) -> SEL(X, from(X''))
SEL(s(X), cons(Y, nfirst(X1', X2'))) -> SEL(X, first(X1', X2'))
SEL(s(X), cons(Y, Z')) -> SEL(X, Z')

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 8
Narrowing Transformation


Dependency Pairs:

SEL(s(X), cons(Y, Z')) -> SEL(X, Z')
SEL(s(X), cons(Y, nfirst(X1', X2'))) -> SEL(X, first(X1', X2'))
SEL(s(X), cons(Y, nfrom(X''))) -> SEL(X, from(X''))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

SEL(s(X), cons(Y, nfrom(X''))) -> SEL(X, from(X''))
two new Dependency Pairs are created:

SEL(s(X), cons(Y, nfrom(X'''))) -> SEL(X, cons(X''', nfrom(s(X'''))))
SEL(s(X), cons(Y, nfrom(X'''))) -> SEL(X, nfrom(X'''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 8
Nar
             ...
               →DP Problem 9
Narrowing Transformation


Dependency Pairs:

SEL(s(X), cons(Y, nfrom(X'''))) -> SEL(X, cons(X''', nfrom(s(X'''))))
SEL(s(X), cons(Y, nfirst(X1', X2'))) -> SEL(X, first(X1', X2'))
SEL(s(X), cons(Y, Z')) -> SEL(X, Z')


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

SEL(s(X), cons(Y, nfirst(X1', X2'))) -> SEL(X, first(X1', X2'))
three new Dependency Pairs are created:

SEL(s(X), cons(Y, nfirst(0, X2''))) -> SEL(X, nil)
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', Z')))) -> SEL(X, cons(Y'', nfirst(X'', activate(Z'))))
SEL(s(X), cons(Y, nfirst(X1'', X2''))) -> SEL(X, nfirst(X1'', X2''))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 8
Nar
             ...
               →DP Problem 10
Forward Instantiation Transformation


Dependency Pairs:

SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', Z')))) -> SEL(X, cons(Y'', nfirst(X'', activate(Z'))))
SEL(s(X), cons(Y, Z')) -> SEL(X, Z')
SEL(s(X), cons(Y, nfrom(X'''))) -> SEL(X, cons(X''', nfrom(s(X'''))))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

SEL(s(X), cons(Y, Z')) -> SEL(X, Z')
three new Dependency Pairs are created:

SEL(s(s(X'')), cons(Y, cons(Y'', Z'''))) -> SEL(s(X''), cons(Y'', Z'''))
SEL(s(s(X'')), cons(Y, cons(Y'', nfrom(X''''')))) -> SEL(s(X''), cons(Y'', nfrom(X''''')))
SEL(s(s(X'')), cons(Y, cons(Y'', nfirst(s(X''''), cons(Y'''', Z'''))))) -> SEL(s(X''), cons(Y'', nfirst(s(X''''), cons(Y'''', Z'''))))

The transformation is resulting in three new DP problems:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 8
Nar
             ...
               →DP Problem 11
Narrowing Transformation


Dependency Pair:

SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', Z')))) -> SEL(X, cons(Y'', nfirst(X'', activate(Z'))))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', Z')))) -> SEL(X, cons(Y'', nfirst(X'', activate(Z'))))
three new Dependency Pairs are created:

SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfrom(X'''))))) -> SEL(X, cons(Y'', nfirst(X'', from(X'''))))
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfirst(X1', X2'))))) -> SEL(X, cons(Y'', nfirst(X'', first(X1', X2'))))
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', Z'')))) -> SEL(X, cons(Y'', nfirst(X'', Z'')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 8
Nar
             ...
               →DP Problem 16
Narrowing Transformation


Dependency Pairs:

SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', Z'')))) -> SEL(X, cons(Y'', nfirst(X'', Z'')))
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfirst(X1', X2'))))) -> SEL(X, cons(Y'', nfirst(X'', first(X1', X2'))))
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfrom(X'''))))) -> SEL(X, cons(Y'', nfirst(X'', from(X'''))))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfrom(X'''))))) -> SEL(X, cons(Y'', nfirst(X'', from(X'''))))
two new Dependency Pairs are created:

SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfrom(X''''))))) -> SEL(X, cons(Y'', nfirst(X'', cons(X'''', nfrom(s(X''''))))))
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfrom(X''''))))) -> SEL(X, cons(Y'', nfirst(X'', nfrom(X''''))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 8
Nar
             ...
               →DP Problem 17
Narrowing Transformation


Dependency Pairs:

SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfrom(X''''))))) -> SEL(X, cons(Y'', nfirst(X'', cons(X'''', nfrom(s(X''''))))))
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfirst(X1', X2'))))) -> SEL(X, cons(Y'', nfirst(X'', first(X1', X2'))))
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', Z'')))) -> SEL(X, cons(Y'', nfirst(X'', Z'')))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfirst(X1', X2'))))) -> SEL(X, cons(Y'', nfirst(X'', first(X1', X2'))))
three new Dependency Pairs are created:

SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfirst(0, X2''))))) -> SEL(X, cons(Y'', nfirst(X'', nil)))
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfirst(s(X'''), cons(Y''', Z')))))) -> SEL(X, cons(Y'', nfirst(X'', cons(Y''', nfirst(X''', activate(Z'))))))
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfirst(X1'', X2''))))) -> SEL(X, cons(Y'', nfirst(X'', nfirst(X1'', X2''))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 8
Nar
             ...
               →DP Problem 18
Narrowing Transformation


Dependency Pairs:

SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfirst(s(X'''), cons(Y''', Z')))))) -> SEL(X, cons(Y'', nfirst(X'', cons(Y''', nfirst(X''', activate(Z'))))))
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', Z'')))) -> SEL(X, cons(Y'', nfirst(X'', Z'')))
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfrom(X''''))))) -> SEL(X, cons(Y'', nfirst(X'', cons(X'''', nfrom(s(X''''))))))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfirst(s(X'''), cons(Y''', Z')))))) -> SEL(X, cons(Y'', nfirst(X'', cons(Y''', nfirst(X''', activate(Z'))))))
three new Dependency Pairs are created:

SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfirst(s(X'''), cons(Y''', nfrom(X'0))))))) -> SEL(X, cons(Y'', nfirst(X'', cons(Y''', nfirst(X''', from(X'0))))))
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfirst(s(X'''), cons(Y''', nfirst(X1', X2'))))))) -> SEL(X, cons(Y'', nfirst(X'', cons(Y''', nfirst(X''', first(X1', X2'))))))
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfirst(s(X'''), cons(Y''', Z'')))))) -> SEL(X, cons(Y'', nfirst(X'', cons(Y''', nfirst(X''', Z'')))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 8
Nar
             ...
               →DP Problem 19
Forward Instantiation Transformation


Dependency Pairs:

SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfirst(s(X'''), cons(Y''', Z'')))))) -> SEL(X, cons(Y'', nfirst(X'', cons(Y''', nfirst(X''', Z'')))))
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfirst(s(X'''), cons(Y''', nfirst(X1', X2'))))))) -> SEL(X, cons(Y'', nfirst(X'', cons(Y''', nfirst(X''', first(X1', X2'))))))
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfirst(s(X'''), cons(Y''', nfrom(X'0))))))) -> SEL(X, cons(Y'', nfirst(X'', cons(Y''', nfirst(X''', from(X'0))))))
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfrom(X''''))))) -> SEL(X, cons(Y'', nfirst(X'', cons(X'''', nfrom(s(X''''))))))
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', Z'')))) -> SEL(X, cons(Y'', nfirst(X'', Z'')))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', Z'')))) -> SEL(X, cons(Y'', nfirst(X'', Z'')))
five new Dependency Pairs are created:

SEL(s(s(X'0)), cons(Y, nfirst(s(s(X'''')), cons(Y''0, cons(Y'''', Z''''))))) -> SEL(s(X'0), cons(Y''0, nfirst(s(X''''), cons(Y'''', Z''''))))
SEL(s(s(X'0)), cons(Y, nfirst(s(s(X'''')), cons(Y''0, cons(Y'''', nfrom(X'''''')))))) -> SEL(s(X'0), cons(Y''0, nfirst(s(X''''), cons(Y'''', nfrom(X'''''')))))
SEL(s(s(X''')), cons(Y, nfirst(s(s(X''''0)), cons(Y''', cons(Y'''''', nfirst(s(X''''''), cons(Y''''''', nfrom(X'0'')))))))) -> SEL(s(X'''), cons(Y''', nfirst(s(X''''0), cons(Y'''''', nfirst(s(X''''''), cons(Y''''''', nfrom(X'0'')))))))
SEL(s(s(X''')), cons(Y, nfirst(s(s(X''''0)), cons(Y''', cons(Y'''''', nfirst(s(X''''''), cons(Y''''''', nfirst(X1''', X2''')))))))) -> SEL(s(X'''), cons(Y''', nfirst(s(X''''0), cons(Y'''''', nfirst(s(X''''''), cons(Y''''''', nfirst(X1''', X2''')))))))
SEL(s(s(X''')), cons(Y, nfirst(s(s(X''''0)), cons(Y''', cons(Y'''''', nfirst(s(X''''''), cons(Y''''''', Z''''))))))) -> SEL(s(X'''), cons(Y''', nfirst(s(X''''0), cons(Y'''''', nfirst(s(X''''''), cons(Y''''''', Z''''))))))

The transformation is resulting in three new DP problems:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 8
Nar
             ...
               →DP Problem 20
Remaining Obligation(s)




The following remains to be proven:
Dependency Pairs:

SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfirst(s(X'''), cons(Y''', nfirst(X1', X2'))))))) -> SEL(X, cons(Y'', nfirst(X'', cons(Y''', nfirst(X''', first(X1', X2'))))))
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfirst(s(X'''), cons(Y''', nfrom(X'0))))))) -> SEL(X, cons(Y'', nfirst(X'', cons(Y''', nfirst(X''', from(X'0))))))
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfirst(s(X'''), cons(Y''', Z'')))))) -> SEL(X, cons(Y'', nfirst(X'', cons(Y''', nfirst(X''', Z'')))))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X


Strategy:

innermost




   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 8
Nar
             ...
               →DP Problem 21
Instantiation Transformation


Dependency Pair:

SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfrom(X''''))))) -> SEL(X, cons(Y'', nfirst(X'', cons(X'''', nfrom(s(X''''))))))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X


Strategy:

innermost




On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfrom(X''''))))) -> SEL(X, cons(Y'', nfirst(X'', cons(X'''', nfrom(s(X''''))))))
one new Dependency Pair is created:

SEL(s(X0), cons(Y', nfirst(s(X''0), cons(Y'''', nfrom(s(Y'''')))))) -> SEL(X0, cons(Y'''', nfirst(X''0, cons(s(Y''''), nfrom(s(s(Y'''')))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 8
Nar
             ...
               →DP Problem 23
Argument Filtering and Ordering


Dependency Pair:

SEL(s(X0), cons(Y', nfirst(s(X''0), cons(Y'''', nfrom(s(Y'''')))))) -> SEL(X0, cons(Y'''', nfirst(X''0, cons(s(Y''''), nfrom(s(s(Y'''')))))))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X


Strategy:

innermost




The following dependency pair can be strictly oriented:

SEL(s(X0), cons(Y', nfirst(s(X''0), cons(Y'''', nfrom(s(Y'''')))))) -> SEL(X0, cons(Y'''', nfirst(X''0, cons(s(Y''''), nfrom(s(s(Y'''')))))))


There are no usable rules for innermost that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
SEL(x1, x2) -> SEL(x1, x2)
s(x1) -> s(x1)
cons(x1, x2) -> x2
nfirst(x1, x2) -> nfirst(x1, x2)
nfrom(x1) -> nfrom


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 8
Nar
             ...
               →DP Problem 25
Dependency Graph


Dependency Pair:


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 8
Nar
             ...
               →DP Problem 22
Forward Instantiation Transformation


Dependency Pair:

SEL(s(s(X'0)), cons(Y, nfirst(s(s(X'''')), cons(Y''0, cons(Y'''', Z''''))))) -> SEL(s(X'0), cons(Y''0, nfirst(s(X''''), cons(Y'''', Z''''))))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

SEL(s(s(X'0)), cons(Y, nfirst(s(s(X'''')), cons(Y''0, cons(Y'''', Z''''))))) -> SEL(s(X'0), cons(Y''0, nfirst(s(X''''), cons(Y'''', Z''''))))
one new Dependency Pair is created:

SEL(s(s(s(X'0''))), cons(Y, nfirst(s(s(s(X''''''))), cons(Y''0'', cons(Y'''''', cons(Y''''''', Z'''''')))))) -> SEL(s(s(X'0'')), cons(Y''0'', nfirst(s(s(X'''''')), cons(Y'''''', cons(Y''''''', Z'''''')))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 8
Nar
             ...
               →DP Problem 24
Argument Filtering and Ordering


Dependency Pair:

SEL(s(s(s(X'0''))), cons(Y, nfirst(s(s(s(X''''''))), cons(Y''0'', cons(Y'''''', cons(Y''''''', Z'''''')))))) -> SEL(s(s(X'0'')), cons(Y''0'', nfirst(s(s(X'''''')), cons(Y'''''', cons(Y''''''', Z'''''')))))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X


Strategy:

innermost




The following dependency pair can be strictly oriented:

SEL(s(s(s(X'0''))), cons(Y, nfirst(s(s(s(X''''''))), cons(Y''0'', cons(Y'''''', cons(Y''''''', Z'''''')))))) -> SEL(s(s(X'0'')), cons(Y''0'', nfirst(s(s(X'''''')), cons(Y'''''', cons(Y''''''', Z'''''')))))


There are no usable rules for innermost that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
SEL(x1, x2) -> SEL(x1, x2)
s(x1) -> s(x1)
cons(x1, x2) -> cons(x1, x2)
nfirst(x1, x2) -> x2


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 8
Nar
             ...
               →DP Problem 12
Argument Filtering and Ordering


Dependency Pair:

SEL(s(X), cons(Y, nfrom(X'''))) -> SEL(X, cons(X''', nfrom(s(X'''))))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X


Strategy:

innermost




The following dependency pair can be strictly oriented:

SEL(s(X), cons(Y, nfrom(X'''))) -> SEL(X, cons(X''', nfrom(s(X'''))))


There are no usable rules for innermost that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
SEL(x1, x2) -> SEL(x1, x2)
s(x1) -> s(x1)
cons(x1, x2) -> x2
nfrom(x1) -> nfrom


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 8
Nar
             ...
               →DP Problem 14
Dependency Graph


Dependency Pair:


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Nar
           →DP Problem 8
Nar
             ...
               →DP Problem 13
Argument Filtering and Ordering


Dependency Pair:

SEL(s(s(X'')), cons(Y, cons(Y'', Z'''))) -> SEL(s(X''), cons(Y'', Z'''))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X


Strategy:

innermost




The following dependency pair can be strictly oriented:

SEL(s(s(X'')), cons(Y, cons(Y'', Z'''))) -> SEL(s(X''), cons(Y'', Z'''))


There are no usable rules for innermost that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
SEL(x1, x2) -> SEL(x1, x2)
s(x1) -> s(x1)
cons(x1, x2) -> cons(x1, x2)

Innermost Termination of R could not be shown.
Duration:
0:06 minutes