R
↳Dependency Pair Analysis
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))
SEL(s(X), cons(Y, Z)) -> ACTIVATE(Z)
ACTIVATE(nfrom(X)) -> FROM(X)
ACTIVATE(nfirst(X1, X2)) -> FIRST(X1, X2)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
ACTIVATE(nfirst(X1, X2)) -> FIRST(X1, X2)
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
innermost
one new Dependency Pair is created:
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
FIRST(s(X), cons(Y, nfirst(X1'', X2''))) -> ACTIVATE(nfirst(X1'', X2''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
FIRST(s(X), cons(Y, nfirst(X1'', X2''))) -> ACTIVATE(nfirst(X1'', X2''))
ACTIVATE(nfirst(X1, X2)) -> FIRST(X1, X2)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
innermost
one new Dependency Pair is created:
ACTIVATE(nfirst(X1, X2)) -> FIRST(X1, X2)
ACTIVATE(nfirst(s(X''), cons(Y'', nfirst(X1'''', X2'''')))) -> FIRST(s(X''), cons(Y'', nfirst(X1'''', X2'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 4
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
ACTIVATE(nfirst(s(X''), cons(Y'', nfirst(X1'''', X2'''')))) -> FIRST(s(X''), cons(Y'', nfirst(X1'''', X2'''')))
FIRST(s(X), cons(Y, nfirst(X1'', X2''))) -> ACTIVATE(nfirst(X1'', X2''))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
innermost
one new Dependency Pair is created:
FIRST(s(X), cons(Y, nfirst(X1'', X2''))) -> ACTIVATE(nfirst(X1'', X2''))
FIRST(s(X), cons(Y, nfirst(s(X''''), cons(Y'''', nfirst(X1'''''', X2''''''))))) -> ACTIVATE(nfirst(s(X''''), cons(Y'''', nfirst(X1'''''', X2''''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 5
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
FIRST(s(X), cons(Y, nfirst(s(X''''), cons(Y'''', nfirst(X1'''''', X2''''''))))) -> ACTIVATE(nfirst(s(X''''), cons(Y'''', nfirst(X1'''''', X2''''''))))
ACTIVATE(nfirst(s(X''), cons(Y'', nfirst(X1'''', X2'''')))) -> FIRST(s(X''), cons(Y'', nfirst(X1'''', X2'''')))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
innermost
one new Dependency Pair is created:
ACTIVATE(nfirst(s(X''), cons(Y'', nfirst(X1'''', X2'''')))) -> FIRST(s(X''), cons(Y'', nfirst(X1'''', X2'''')))
ACTIVATE(nfirst(s(X'''), cons(Y''', nfirst(s(X''''''), cons(Y'''''', nfirst(X1'''''''', X2'''''''')))))) -> FIRST(s(X'''), cons(Y''', nfirst(s(X''''''), cons(Y'''''', nfirst(X1'''''''', X2'''''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 6
↳Argument Filtering and Ordering
→DP Problem 2
↳Nar
ACTIVATE(nfirst(s(X'''), cons(Y''', nfirst(s(X''''''), cons(Y'''''', nfirst(X1'''''''', X2'''''''')))))) -> FIRST(s(X'''), cons(Y''', nfirst(s(X''''''), cons(Y'''''', nfirst(X1'''''''', X2'''''''')))))
FIRST(s(X), cons(Y, nfirst(s(X''''), cons(Y'''', nfirst(X1'''''', X2''''''))))) -> ACTIVATE(nfirst(s(X''''), cons(Y'''', nfirst(X1'''''', X2''''''))))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
innermost
ACTIVATE(nfirst(s(X'''), cons(Y''', nfirst(s(X''''''), cons(Y'''''', nfirst(X1'''''''', X2'''''''')))))) -> FIRST(s(X'''), cons(Y''', nfirst(s(X''''''), cons(Y'''''', nfirst(X1'''''''', X2'''''''')))))
FIRST(s(X), cons(Y, nfirst(s(X''''), cons(Y'''', nfirst(X1'''''', X2''''''))))) -> ACTIVATE(nfirst(s(X''''), cons(Y'''', nfirst(X1'''''', X2''''''))))
FIRST(x1, x2) -> x2
cons(x1, x2) -> cons(x1, x2)
ACTIVATE(x1) -> x1
nfirst(x1, x2) -> nfirst(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 7
↳Dependency Graph
→DP Problem 2
↳Nar
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Narrowing Transformation
SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
innermost
three new Dependency Pairs are created:
SEL(s(X), cons(Y, Z)) -> SEL(X, activate(Z))
SEL(s(X), cons(Y, nfrom(X''))) -> SEL(X, from(X''))
SEL(s(X), cons(Y, nfirst(X1', X2'))) -> SEL(X, first(X1', X2'))
SEL(s(X), cons(Y, Z')) -> SEL(X, Z')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Narrowing Transformation
SEL(s(X), cons(Y, Z')) -> SEL(X, Z')
SEL(s(X), cons(Y, nfirst(X1', X2'))) -> SEL(X, first(X1', X2'))
SEL(s(X), cons(Y, nfrom(X''))) -> SEL(X, from(X''))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
innermost
two new Dependency Pairs are created:
SEL(s(X), cons(Y, nfrom(X''))) -> SEL(X, from(X''))
SEL(s(X), cons(Y, nfrom(X'''))) -> SEL(X, cons(X''', nfrom(s(X'''))))
SEL(s(X), cons(Y, nfrom(X'''))) -> SEL(X, nfrom(X'''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Nar
...
→DP Problem 9
↳Narrowing Transformation
SEL(s(X), cons(Y, nfrom(X'''))) -> SEL(X, cons(X''', nfrom(s(X'''))))
SEL(s(X), cons(Y, nfirst(X1', X2'))) -> SEL(X, first(X1', X2'))
SEL(s(X), cons(Y, Z')) -> SEL(X, Z')
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
innermost
three new Dependency Pairs are created:
SEL(s(X), cons(Y, nfirst(X1', X2'))) -> SEL(X, first(X1', X2'))
SEL(s(X), cons(Y, nfirst(0, X2''))) -> SEL(X, nil)
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', Z')))) -> SEL(X, cons(Y'', nfirst(X'', activate(Z'))))
SEL(s(X), cons(Y, nfirst(X1'', X2''))) -> SEL(X, nfirst(X1'', X2''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Nar
...
→DP Problem 10
↳Forward Instantiation Transformation
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', Z')))) -> SEL(X, cons(Y'', nfirst(X'', activate(Z'))))
SEL(s(X), cons(Y, Z')) -> SEL(X, Z')
SEL(s(X), cons(Y, nfrom(X'''))) -> SEL(X, cons(X''', nfrom(s(X'''))))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
innermost
three new Dependency Pairs are created:
SEL(s(X), cons(Y, Z')) -> SEL(X, Z')
SEL(s(s(X'')), cons(Y, cons(Y'', Z'''))) -> SEL(s(X''), cons(Y'', Z'''))
SEL(s(s(X'')), cons(Y, cons(Y'', nfrom(X''''')))) -> SEL(s(X''), cons(Y'', nfrom(X''''')))
SEL(s(s(X'')), cons(Y, cons(Y'', nfirst(s(X''''), cons(Y'''', Z'''))))) -> SEL(s(X''), cons(Y'', nfirst(s(X''''), cons(Y'''', Z'''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Nar
...
→DP Problem 11
↳Narrowing Transformation
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', Z')))) -> SEL(X, cons(Y'', nfirst(X'', activate(Z'))))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
innermost
three new Dependency Pairs are created:
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', Z')))) -> SEL(X, cons(Y'', nfirst(X'', activate(Z'))))
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfrom(X'''))))) -> SEL(X, cons(Y'', nfirst(X'', from(X'''))))
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfirst(X1', X2'))))) -> SEL(X, cons(Y'', nfirst(X'', first(X1', X2'))))
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', Z'')))) -> SEL(X, cons(Y'', nfirst(X'', Z'')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Nar
...
→DP Problem 16
↳Narrowing Transformation
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', Z'')))) -> SEL(X, cons(Y'', nfirst(X'', Z'')))
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfirst(X1', X2'))))) -> SEL(X, cons(Y'', nfirst(X'', first(X1', X2'))))
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfrom(X'''))))) -> SEL(X, cons(Y'', nfirst(X'', from(X'''))))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
innermost
two new Dependency Pairs are created:
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfrom(X'''))))) -> SEL(X, cons(Y'', nfirst(X'', from(X'''))))
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfrom(X''''))))) -> SEL(X, cons(Y'', nfirst(X'', cons(X'''', nfrom(s(X''''))))))
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfrom(X''''))))) -> SEL(X, cons(Y'', nfirst(X'', nfrom(X''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Nar
...
→DP Problem 17
↳Narrowing Transformation
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfrom(X''''))))) -> SEL(X, cons(Y'', nfirst(X'', cons(X'''', nfrom(s(X''''))))))
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfirst(X1', X2'))))) -> SEL(X, cons(Y'', nfirst(X'', first(X1', X2'))))
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', Z'')))) -> SEL(X, cons(Y'', nfirst(X'', Z'')))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
innermost
three new Dependency Pairs are created:
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfirst(X1', X2'))))) -> SEL(X, cons(Y'', nfirst(X'', first(X1', X2'))))
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfirst(0, X2''))))) -> SEL(X, cons(Y'', nfirst(X'', nil)))
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfirst(s(X'''), cons(Y''', Z')))))) -> SEL(X, cons(Y'', nfirst(X'', cons(Y''', nfirst(X''', activate(Z'))))))
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfirst(X1'', X2''))))) -> SEL(X, cons(Y'', nfirst(X'', nfirst(X1'', X2''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Nar
...
→DP Problem 18
↳Narrowing Transformation
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfirst(s(X'''), cons(Y''', Z')))))) -> SEL(X, cons(Y'', nfirst(X'', cons(Y''', nfirst(X''', activate(Z'))))))
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', Z'')))) -> SEL(X, cons(Y'', nfirst(X'', Z'')))
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfrom(X''''))))) -> SEL(X, cons(Y'', nfirst(X'', cons(X'''', nfrom(s(X''''))))))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
innermost
three new Dependency Pairs are created:
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfirst(s(X'''), cons(Y''', Z')))))) -> SEL(X, cons(Y'', nfirst(X'', cons(Y''', nfirst(X''', activate(Z'))))))
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfirst(s(X'''), cons(Y''', nfrom(X'0))))))) -> SEL(X, cons(Y'', nfirst(X'', cons(Y''', nfirst(X''', from(X'0))))))
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfirst(s(X'''), cons(Y''', nfirst(X1', X2'))))))) -> SEL(X, cons(Y'', nfirst(X'', cons(Y''', nfirst(X''', first(X1', X2'))))))
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfirst(s(X'''), cons(Y''', Z'')))))) -> SEL(X, cons(Y'', nfirst(X'', cons(Y''', nfirst(X''', Z'')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Nar
...
→DP Problem 19
↳Forward Instantiation Transformation
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfirst(s(X'''), cons(Y''', Z'')))))) -> SEL(X, cons(Y'', nfirst(X'', cons(Y''', nfirst(X''', Z'')))))
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfirst(s(X'''), cons(Y''', nfirst(X1', X2'))))))) -> SEL(X, cons(Y'', nfirst(X'', cons(Y''', nfirst(X''', first(X1', X2'))))))
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfirst(s(X'''), cons(Y''', nfrom(X'0))))))) -> SEL(X, cons(Y'', nfirst(X'', cons(Y''', nfirst(X''', from(X'0))))))
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfrom(X''''))))) -> SEL(X, cons(Y'', nfirst(X'', cons(X'''', nfrom(s(X''''))))))
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', Z'')))) -> SEL(X, cons(Y'', nfirst(X'', Z'')))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
innermost
five new Dependency Pairs are created:
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', Z'')))) -> SEL(X, cons(Y'', nfirst(X'', Z'')))
SEL(s(s(X'0)), cons(Y, nfirst(s(s(X'''')), cons(Y''0, cons(Y'''', Z''''))))) -> SEL(s(X'0), cons(Y''0, nfirst(s(X''''), cons(Y'''', Z''''))))
SEL(s(s(X'0)), cons(Y, nfirst(s(s(X'''')), cons(Y''0, cons(Y'''', nfrom(X'''''')))))) -> SEL(s(X'0), cons(Y''0, nfirst(s(X''''), cons(Y'''', nfrom(X'''''')))))
SEL(s(s(X''')), cons(Y, nfirst(s(s(X''''0)), cons(Y''', cons(Y'''''', nfirst(s(X''''''), cons(Y''''''', nfrom(X'0'')))))))) -> SEL(s(X'''), cons(Y''', nfirst(s(X''''0), cons(Y'''''', nfirst(s(X''''''), cons(Y''''''', nfrom(X'0'')))))))
SEL(s(s(X''')), cons(Y, nfirst(s(s(X''''0)), cons(Y''', cons(Y'''''', nfirst(s(X''''''), cons(Y''''''', nfirst(X1''', X2''')))))))) -> SEL(s(X'''), cons(Y''', nfirst(s(X''''0), cons(Y'''''', nfirst(s(X''''''), cons(Y''''''', nfirst(X1''', X2''')))))))
SEL(s(s(X''')), cons(Y, nfirst(s(s(X''''0)), cons(Y''', cons(Y'''''', nfirst(s(X''''''), cons(Y''''''', Z''''))))))) -> SEL(s(X'''), cons(Y''', nfirst(s(X''''0), cons(Y'''''', nfirst(s(X''''''), cons(Y''''''', Z''''))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Nar
...
→DP Problem 20
↳Remaining Obligation(s)
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfirst(s(X'''), cons(Y''', nfirst(X1', X2'))))))) -> SEL(X, cons(Y'', nfirst(X'', cons(Y''', nfirst(X''', first(X1', X2'))))))
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfirst(s(X'''), cons(Y''', nfrom(X'0))))))) -> SEL(X, cons(Y'', nfirst(X'', cons(Y''', nfirst(X''', from(X'0))))))
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfirst(s(X'''), cons(Y''', Z'')))))) -> SEL(X, cons(Y'', nfirst(X'', cons(Y''', nfirst(X''', Z'')))))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Nar
...
→DP Problem 21
↳Instantiation Transformation
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfrom(X''''))))) -> SEL(X, cons(Y'', nfirst(X'', cons(X'''', nfrom(s(X''''))))))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
innermost
one new Dependency Pair is created:
SEL(s(X), cons(Y, nfirst(s(X''), cons(Y'', nfrom(X''''))))) -> SEL(X, cons(Y'', nfirst(X'', cons(X'''', nfrom(s(X''''))))))
SEL(s(X0), cons(Y', nfirst(s(X''0), cons(Y'''', nfrom(s(Y'''')))))) -> SEL(X0, cons(Y'''', nfirst(X''0, cons(s(Y''''), nfrom(s(s(Y'''')))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Nar
...
→DP Problem 23
↳Argument Filtering and Ordering
SEL(s(X0), cons(Y', nfirst(s(X''0), cons(Y'''', nfrom(s(Y'''')))))) -> SEL(X0, cons(Y'''', nfirst(X''0, cons(s(Y''''), nfrom(s(s(Y'''')))))))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
innermost
SEL(s(X0), cons(Y', nfirst(s(X''0), cons(Y'''', nfrom(s(Y'''')))))) -> SEL(X0, cons(Y'''', nfirst(X''0, cons(s(Y''''), nfrom(s(s(Y'''')))))))
SEL(x1, x2) -> SEL(x1, x2)
s(x1) -> s(x1)
cons(x1, x2) -> x2
nfirst(x1, x2) -> nfirst(x1, x2)
nfrom(x1) -> nfrom
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Nar
...
→DP Problem 25
↳Dependency Graph
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Nar
...
→DP Problem 22
↳Forward Instantiation Transformation
SEL(s(s(X'0)), cons(Y, nfirst(s(s(X'''')), cons(Y''0, cons(Y'''', Z''''))))) -> SEL(s(X'0), cons(Y''0, nfirst(s(X''''), cons(Y'''', Z''''))))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
innermost
one new Dependency Pair is created:
SEL(s(s(X'0)), cons(Y, nfirst(s(s(X'''')), cons(Y''0, cons(Y'''', Z''''))))) -> SEL(s(X'0), cons(Y''0, nfirst(s(X''''), cons(Y'''', Z''''))))
SEL(s(s(s(X'0''))), cons(Y, nfirst(s(s(s(X''''''))), cons(Y''0'', cons(Y'''''', cons(Y''''''', Z'''''')))))) -> SEL(s(s(X'0'')), cons(Y''0'', nfirst(s(s(X'''''')), cons(Y'''''', cons(Y''''''', Z'''''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Nar
...
→DP Problem 24
↳Argument Filtering and Ordering
SEL(s(s(s(X'0''))), cons(Y, nfirst(s(s(s(X''''''))), cons(Y''0'', cons(Y'''''', cons(Y''''''', Z'''''')))))) -> SEL(s(s(X'0'')), cons(Y''0'', nfirst(s(s(X'''''')), cons(Y'''''', cons(Y''''''', Z'''''')))))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
innermost
SEL(s(s(s(X'0''))), cons(Y, nfirst(s(s(s(X''''''))), cons(Y''0'', cons(Y'''''', cons(Y''''''', Z'''''')))))) -> SEL(s(s(X'0'')), cons(Y''0'', nfirst(s(s(X'''''')), cons(Y'''''', cons(Y''''''', Z'''''')))))
SEL(x1, x2) -> SEL(x1, x2)
s(x1) -> s(x1)
cons(x1, x2) -> cons(x1, x2)
nfirst(x1, x2) -> x2
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Nar
...
→DP Problem 12
↳Argument Filtering and Ordering
SEL(s(X), cons(Y, nfrom(X'''))) -> SEL(X, cons(X''', nfrom(s(X'''))))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
innermost
SEL(s(X), cons(Y, nfrom(X'''))) -> SEL(X, cons(X''', nfrom(s(X'''))))
SEL(x1, x2) -> SEL(x1, x2)
s(x1) -> s(x1)
cons(x1, x2) -> x2
nfrom(x1) -> nfrom
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Nar
...
→DP Problem 14
↳Dependency Graph
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 8
↳Nar
...
→DP Problem 13
↳Argument Filtering and Ordering
SEL(s(s(X'')), cons(Y, cons(Y'', Z'''))) -> SEL(s(X''), cons(Y'', Z'''))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
first(0, Z) -> nil
first(s(X), cons(Y, Z)) -> cons(Y, nfirst(X, activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
sel(0, cons(X, Z)) -> X
sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
activate(nfrom(X)) -> from(X)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(X) -> X
innermost
SEL(s(s(X'')), cons(Y, cons(Y'', Z'''))) -> SEL(s(X''), cons(Y'', Z'''))
SEL(x1, x2) -> SEL(x1, x2)
s(x1) -> s(x1)
cons(x1, x2) -> cons(x1, x2)