R
↳Dependency Pair Analysis
ACTIVE(from(X)) -> CONS(X, from(s(X)))
ACTIVE(from(X)) -> FROM(s(X))
ACTIVE(from(X)) -> S(X)
ACTIVE(first(s(X), cons(Y, Z))) -> CONS(Y, first(X, Z))
ACTIVE(first(s(X), cons(Y, Z))) -> FIRST(X, Z)
ACTIVE(sel(s(X), cons(Y, Z))) -> SEL(X, Z)
ACTIVE(from(X)) -> FROM(active(X))
ACTIVE(from(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(s(X)) -> S(active(X))
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(first(X1, X2)) -> FIRST(active(X1), X2)
ACTIVE(first(X1, X2)) -> ACTIVE(X1)
ACTIVE(first(X1, X2)) -> FIRST(X1, active(X2))
ACTIVE(first(X1, X2)) -> ACTIVE(X2)
ACTIVE(sel(X1, X2)) -> SEL(active(X1), X2)
ACTIVE(sel(X1, X2)) -> ACTIVE(X1)
ACTIVE(sel(X1, X2)) -> SEL(X1, active(X2))
ACTIVE(sel(X1, X2)) -> ACTIVE(X2)
FROM(mark(X)) -> FROM(X)
FROM(ok(X)) -> FROM(X)
CONS(mark(X1), X2) -> CONS(X1, X2)
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
S(mark(X)) -> S(X)
S(ok(X)) -> S(X)
FIRST(mark(X1), X2) -> FIRST(X1, X2)
FIRST(X1, mark(X2)) -> FIRST(X1, X2)
FIRST(ok(X1), ok(X2)) -> FIRST(X1, X2)
SEL(mark(X1), X2) -> SEL(X1, X2)
SEL(X1, mark(X2)) -> SEL(X1, X2)
SEL(ok(X1), ok(X2)) -> SEL(X1, X2)
PROPER(from(X)) -> FROM(proper(X))
PROPER(from(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(s(X)) -> S(proper(X))
PROPER(s(X)) -> PROPER(X)
PROPER(first(X1, X2)) -> FIRST(proper(X1), proper(X2))
PROPER(first(X1, X2)) -> PROPER(X1)
PROPER(first(X1, X2)) -> PROPER(X2)
PROPER(sel(X1, X2)) -> SEL(proper(X1), proper(X2))
PROPER(sel(X1, X2)) -> PROPER(X1)
PROPER(sel(X1, X2)) -> PROPER(X2)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)
R
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
CONS(mark(X1), X2) -> CONS(X1, X2)
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(0, Z)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(sel(0, cons(X, Z))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 9
↳Size-Change Principle
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
CONS(mark(X1), X2) -> CONS(X1, X2)
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
none
innermost
|
|
|
|
trivial
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Usable Rules (Innermost)
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
FIRST(ok(X1), ok(X2)) -> FIRST(X1, X2)
FIRST(mark(X1), X2) -> FIRST(X1, X2)
FIRST(X1, mark(X2)) -> FIRST(X1, X2)
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(0, Z)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(sel(0, cons(X, Z))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 10
↳Size-Change Principle
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
FIRST(ok(X1), ok(X2)) -> FIRST(X1, X2)
FIRST(mark(X1), X2) -> FIRST(X1, X2)
FIRST(X1, mark(X2)) -> FIRST(X1, X2)
none
innermost
|
|
|
|
|
|
trivial
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳Usable Rules (Innermost)
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
SEL(ok(X1), ok(X2)) -> SEL(X1, X2)
SEL(mark(X1), X2) -> SEL(X1, X2)
SEL(X1, mark(X2)) -> SEL(X1, X2)
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(0, Z)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(sel(0, cons(X, Z))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 11
↳Size-Change Principle
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
SEL(ok(X1), ok(X2)) -> SEL(X1, X2)
SEL(mark(X1), X2) -> SEL(X1, X2)
SEL(X1, mark(X2)) -> SEL(X1, X2)
none
innermost
|
|
|
|
|
|
trivial
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳Usable Rules (Innermost)
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
FROM(ok(X)) -> FROM(X)
FROM(mark(X)) -> FROM(X)
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(0, Z)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(sel(0, cons(X, Z))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 12
↳Size-Change Principle
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
FROM(ok(X)) -> FROM(X)
FROM(mark(X)) -> FROM(X)
none
innermost
|
|
trivial
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳Usable Rules (Innermost)
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
S(ok(X)) -> S(X)
S(mark(X)) -> S(X)
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(0, Z)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(sel(0, cons(X, Z))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 13
↳Size-Change Principle
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
S(ok(X)) -> S(X)
S(mark(X)) -> S(X)
none
innermost
|
|
trivial
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳Usable Rules (Innermost)
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
ACTIVE(sel(X1, X2)) -> ACTIVE(X2)
ACTIVE(sel(X1, X2)) -> ACTIVE(X1)
ACTIVE(first(X1, X2)) -> ACTIVE(X2)
ACTIVE(first(X1, X2)) -> ACTIVE(X1)
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(from(X)) -> ACTIVE(X)
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(0, Z)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(sel(0, cons(X, Z))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 14
↳Size-Change Principle
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
ACTIVE(sel(X1, X2)) -> ACTIVE(X2)
ACTIVE(sel(X1, X2)) -> ACTIVE(X1)
ACTIVE(first(X1, X2)) -> ACTIVE(X2)
ACTIVE(first(X1, X2)) -> ACTIVE(X1)
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(from(X)) -> ACTIVE(X)
none
innermost
|
|
trivial
from(x1) -> from(x1)
first(x1, x2) -> first(x1, x2)
cons(x1, x2) -> cons(x1, x2)
s(x1) -> s(x1)
sel(x1, x2) -> sel(x1, x2)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳Usable Rules (Innermost)
→DP Problem 8
↳UsableRules
PROPER(sel(X1, X2)) -> PROPER(X2)
PROPER(sel(X1, X2)) -> PROPER(X1)
PROPER(first(X1, X2)) -> PROPER(X2)
PROPER(first(X1, X2)) -> PROPER(X1)
PROPER(s(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(from(X)) -> PROPER(X)
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(0, Z)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(sel(0, cons(X, Z))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 15
↳Size-Change Principle
→DP Problem 8
↳UsableRules
PROPER(sel(X1, X2)) -> PROPER(X2)
PROPER(sel(X1, X2)) -> PROPER(X1)
PROPER(first(X1, X2)) -> PROPER(X2)
PROPER(first(X1, X2)) -> PROPER(X1)
PROPER(s(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(from(X)) -> PROPER(X)
none
innermost
|
|
trivial
from(x1) -> from(x1)
first(x1, x2) -> first(x1, x2)
cons(x1, x2) -> cons(x1, x2)
sel(x1, x2) -> sel(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳Usable Rules (Innermost)
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(0, Z)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(sel(0, cons(X, Z))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(nil) -> ok(nil)
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 16
↳Narrowing Transformation
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(sel(0, cons(X, Z))) -> mark(X)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(first(0, Z)) -> mark(nil)
active(first(X1, X2)) -> first(active(X1), X2)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(from(X)) -> from(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
first(mark(X1), X2) -> mark(first(X1, X2))
from(ok(X)) -> ok(from(X))
from(mark(X)) -> mark(from(X))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(from(X)) -> from(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
innermost
12 new Dependency Pairs are created:
TOP(ok(X)) -> TOP(active(X))
TOP(ok(cons(X1', X2'))) -> TOP(cons(active(X1'), X2'))
TOP(ok(sel(0, cons(X'', Z')))) -> TOP(mark(X''))
TOP(ok(sel(X1', X2'))) -> TOP(sel(X1', active(X2')))
TOP(ok(from(X''))) -> TOP(mark(cons(X'', from(s(X'')))))
TOP(ok(first(s(X''), cons(Y', Z')))) -> TOP(mark(cons(Y', first(X'', Z'))))
TOP(ok(first(0, Z'))) -> TOP(mark(nil))
TOP(ok(first(X1', X2'))) -> TOP(first(active(X1'), X2'))
TOP(ok(sel(s(X''), cons(Y', Z')))) -> TOP(mark(sel(X'', Z')))
TOP(ok(first(X1', X2'))) -> TOP(first(X1', active(X2')))
TOP(ok(s(X''))) -> TOP(s(active(X'')))
TOP(ok(from(X''))) -> TOP(from(active(X'')))
TOP(ok(sel(X1', X2'))) -> TOP(sel(active(X1'), X2'))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 16
↳Nar
...
→DP Problem 17
↳Narrowing Transformation
TOP(ok(sel(X1', X2'))) -> TOP(sel(active(X1'), X2'))
TOP(ok(from(X''))) -> TOP(from(active(X'')))
TOP(ok(s(X''))) -> TOP(s(active(X'')))
TOP(ok(first(X1', X2'))) -> TOP(first(X1', active(X2')))
TOP(ok(sel(s(X''), cons(Y', Z')))) -> TOP(mark(sel(X'', Z')))
TOP(ok(first(X1', X2'))) -> TOP(first(active(X1'), X2'))
TOP(ok(first(0, Z'))) -> TOP(mark(nil))
TOP(ok(first(s(X''), cons(Y', Z')))) -> TOP(mark(cons(Y', first(X'', Z'))))
TOP(ok(from(X''))) -> TOP(mark(cons(X'', from(s(X'')))))
TOP(ok(sel(X1', X2'))) -> TOP(sel(X1', active(X2')))
TOP(ok(sel(0, cons(X'', Z')))) -> TOP(mark(X''))
TOP(ok(cons(X1', X2'))) -> TOP(cons(active(X1'), X2'))
TOP(mark(X)) -> TOP(proper(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(sel(0, cons(X, Z))) -> mark(X)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(first(0, Z)) -> mark(nil)
active(first(X1, X2)) -> first(active(X1), X2)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(from(X)) -> from(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
first(mark(X1), X2) -> mark(first(X1, X2))
from(ok(X)) -> ok(from(X))
from(mark(X)) -> mark(from(X))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(from(X)) -> from(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
innermost
seven new Dependency Pairs are created:
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(cons(X1', X2'))) -> TOP(cons(proper(X1'), proper(X2')))
TOP(mark(nil)) -> TOP(ok(nil))
TOP(mark(from(X''))) -> TOP(from(proper(X'')))
TOP(mark(first(X1', X2'))) -> TOP(first(proper(X1'), proper(X2')))
TOP(mark(sel(X1', X2'))) -> TOP(sel(proper(X1'), proper(X2')))
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(mark(0)) -> TOP(ok(0))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 16
↳Nar
...
→DP Problem 18
↳Remaining Obligation(s)
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(mark(from(X''))) -> TOP(from(proper(X'')))
TOP(ok(from(X''))) -> TOP(from(active(X'')))
TOP(ok(s(X''))) -> TOP(s(active(X'')))
TOP(ok(first(X1', X2'))) -> TOP(first(X1', active(X2')))
TOP(mark(sel(X1', X2'))) -> TOP(sel(proper(X1'), proper(X2')))
TOP(ok(sel(s(X''), cons(Y', Z')))) -> TOP(mark(sel(X'', Z')))
TOP(ok(first(X1', X2'))) -> TOP(first(active(X1'), X2'))
TOP(mark(first(X1', X2'))) -> TOP(first(proper(X1'), proper(X2')))
TOP(ok(first(s(X''), cons(Y', Z')))) -> TOP(mark(cons(Y', first(X'', Z'))))
TOP(ok(from(X''))) -> TOP(mark(cons(X'', from(s(X'')))))
TOP(ok(sel(X1', X2'))) -> TOP(sel(X1', active(X2')))
TOP(mark(cons(X1', X2'))) -> TOP(cons(proper(X1'), proper(X2')))
TOP(ok(sel(0, cons(X'', Z')))) -> TOP(mark(X''))
TOP(ok(cons(X1', X2'))) -> TOP(cons(active(X1'), X2'))
TOP(ok(sel(X1', X2'))) -> TOP(sel(active(X1'), X2'))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(sel(0, cons(X, Z))) -> mark(X)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(from(X)) -> mark(cons(X, from(s(X))))
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(first(0, Z)) -> mark(nil)
active(first(X1, X2)) -> first(active(X1), X2)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(first(X1, X2)) -> first(X1, active(X2))
active(s(X)) -> s(active(X))
active(from(X)) -> from(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
first(mark(X1), X2) -> mark(first(X1, X2))
from(ok(X)) -> ok(from(X))
from(mark(X)) -> mark(from(X))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(from(X)) -> from(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
innermost