R
↳Dependency Pair Analysis
LEQ(s(X), s(Y)) -> LEQ(X, Y)
IF(true, X, Y) -> ACTIVATE(X)
IF(false, X, Y) -> ACTIVATE(Y)
DIFF(X, Y) -> IF(leq(X, Y), n0, ns(ndiff(np(X), Y)))
DIFF(X, Y) -> LEQ(X, Y)
ACTIVATE(n0) -> 0'
ACTIVATE(ns(X)) -> S(activate(X))
ACTIVATE(ns(X)) -> ACTIVATE(X)
ACTIVATE(ndiff(X1, X2)) -> DIFF(activate(X1), activate(X2))
ACTIVATE(ndiff(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(ndiff(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(np(X)) -> P(activate(X))
ACTIVATE(np(X)) -> ACTIVATE(X)
R
↳DPs
→DP Problem 1
↳Narrowing Transformation
ACTIVATE(np(X)) -> ACTIVATE(X)
ACTIVATE(ndiff(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(ndiff(X1, X2)) -> ACTIVATE(X1)
IF(false, X, Y) -> ACTIVATE(Y)
DIFF(X, Y) -> IF(leq(X, Y), n0, ns(ndiff(np(X), Y)))
ACTIVATE(ndiff(X1, X2)) -> DIFF(activate(X1), activate(X2))
ACTIVATE(ns(X)) -> ACTIVATE(X)
IF(true, X, Y) -> ACTIVATE(X)
p(0) -> 0
p(s(X)) -> X
p(X) -> np(X)
leq(0, Y) -> true
leq(s(X), 0) -> false
leq(s(X), s(Y)) -> leq(X, Y)
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
diff(X, Y) -> if(leq(X, Y), n0, ns(ndiff(np(X), Y)))
diff(X1, X2) -> ndiff(X1, X2)
0 -> n0
s(X) -> ns(X)
activate(n0) -> 0
activate(ns(X)) -> s(activate(X))
activate(ndiff(X1, X2)) -> diff(activate(X1), activate(X2))
activate(np(X)) -> p(activate(X))
activate(X) -> X
innermost
no new Dependency Pairs are created.
DIFF(X, Y) -> IF(leq(X, Y), n0, ns(ndiff(np(X), Y)))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Argument Filtering and Ordering
ACTIVATE(ndiff(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(ndiff(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(ns(X)) -> ACTIVATE(X)
ACTIVATE(np(X)) -> ACTIVATE(X)
p(0) -> 0
p(s(X)) -> X
p(X) -> np(X)
leq(0, Y) -> true
leq(s(X), 0) -> false
leq(s(X), s(Y)) -> leq(X, Y)
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
diff(X, Y) -> if(leq(X, Y), n0, ns(ndiff(np(X), Y)))
diff(X1, X2) -> ndiff(X1, X2)
0 -> n0
s(X) -> ns(X)
activate(n0) -> 0
activate(ns(X)) -> s(activate(X))
activate(ndiff(X1, X2)) -> diff(activate(X1), activate(X2))
activate(np(X)) -> p(activate(X))
activate(X) -> X
innermost
ACTIVATE(ndiff(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(ndiff(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(ns(X)) -> ACTIVATE(X)
ACTIVATE(np(X)) -> ACTIVATE(X)
trivial
ACTIVATE(x1) -> ACTIVATE(x1)
np(x1) -> np(x1)
ns(x1) -> ns(x1)
ndiff(x1, x2) -> ndiff(x1, x2)
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳AFS
...
→DP Problem 3
↳Dependency Graph
p(0) -> 0
p(s(X)) -> X
p(X) -> np(X)
leq(0, Y) -> true
leq(s(X), 0) -> false
leq(s(X), s(Y)) -> leq(X, Y)
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
diff(X, Y) -> if(leq(X, Y), n0, ns(ndiff(np(X), Y)))
diff(X1, X2) -> ndiff(X1, X2)
0 -> n0
s(X) -> ns(X)
activate(n0) -> 0
activate(ns(X)) -> s(activate(X))
activate(ndiff(X1, X2)) -> diff(activate(X1), activate(X2))
activate(np(X)) -> p(activate(X))
activate(X) -> X
innermost