R
↳Dependency Pair Analysis
ACTIVE(eq(s(X), s(Y))) -> EQ(X, Y)
ACTIVE(inf(X)) -> CONS(X, inf(s(X)))
ACTIVE(inf(X)) -> INF(s(X))
ACTIVE(inf(X)) -> S(X)
ACTIVE(take(s(X), cons(Y, L))) -> CONS(Y, take(X, L))
ACTIVE(take(s(X), cons(Y, L))) -> TAKE(X, L)
ACTIVE(length(cons(X, L))) -> S(length(L))
ACTIVE(length(cons(X, L))) -> LENGTH(L)
ACTIVE(inf(X)) -> INF(active(X))
ACTIVE(inf(X)) -> ACTIVE(X)
ACTIVE(take(X1, X2)) -> TAKE(active(X1), X2)
ACTIVE(take(X1, X2)) -> ACTIVE(X1)
ACTIVE(take(X1, X2)) -> TAKE(X1, active(X2))
ACTIVE(take(X1, X2)) -> ACTIVE(X2)
ACTIVE(length(X)) -> LENGTH(active(X))
ACTIVE(length(X)) -> ACTIVE(X)
INF(mark(X)) -> INF(X)
INF(ok(X)) -> INF(X)
TAKE(mark(X1), X2) -> TAKE(X1, X2)
TAKE(X1, mark(X2)) -> TAKE(X1, X2)
TAKE(ok(X1), ok(X2)) -> TAKE(X1, X2)
LENGTH(mark(X)) -> LENGTH(X)
LENGTH(ok(X)) -> LENGTH(X)
PROPER(eq(X1, X2)) -> EQ(proper(X1), proper(X2))
PROPER(eq(X1, X2)) -> PROPER(X1)
PROPER(eq(X1, X2)) -> PROPER(X2)
PROPER(s(X)) -> S(proper(X))
PROPER(s(X)) -> PROPER(X)
PROPER(inf(X)) -> INF(proper(X))
PROPER(inf(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(take(X1, X2)) -> TAKE(proper(X1), proper(X2))
PROPER(take(X1, X2)) -> PROPER(X1)
PROPER(take(X1, X2)) -> PROPER(X2)
PROPER(length(X)) -> LENGTH(proper(X))
PROPER(length(X)) -> PROPER(X)
EQ(ok(X1), ok(X2)) -> EQ(X1, X2)
S(ok(X)) -> S(X)
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)
R
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
active(eq(0, 0)) -> mark(true)
active(eq(s(X), s(Y))) -> mark(eq(X, Y))
active(eq(X, Y)) -> mark(false)
active(inf(X)) -> mark(cons(X, inf(s(X))))
active(take(0, X)) -> mark(nil)
active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L)))
active(length(nil)) -> mark(0)
active(length(cons(X, L))) -> mark(s(length(L)))
active(inf(X)) -> inf(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(length(X)) -> length(active(X))
inf(mark(X)) -> mark(inf(X))
inf(ok(X)) -> ok(inf(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
length(mark(X)) -> mark(length(X))
length(ok(X)) -> ok(length(X))
proper(eq(X1, X2)) -> eq(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(true) -> ok(true)
proper(s(X)) -> s(proper(X))
proper(false) -> ok(false)
proper(inf(X)) -> inf(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
eq(ok(X1), ok(X2)) -> ok(eq(X1, X2))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 10
↳Size-Change Principle
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
none
innermost
|
|
trivial
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Usable Rules (Innermost)
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
TAKE(ok(X1), ok(X2)) -> TAKE(X1, X2)
TAKE(X1, mark(X2)) -> TAKE(X1, X2)
TAKE(mark(X1), X2) -> TAKE(X1, X2)
active(eq(0, 0)) -> mark(true)
active(eq(s(X), s(Y))) -> mark(eq(X, Y))
active(eq(X, Y)) -> mark(false)
active(inf(X)) -> mark(cons(X, inf(s(X))))
active(take(0, X)) -> mark(nil)
active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L)))
active(length(nil)) -> mark(0)
active(length(cons(X, L))) -> mark(s(length(L)))
active(inf(X)) -> inf(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(length(X)) -> length(active(X))
inf(mark(X)) -> mark(inf(X))
inf(ok(X)) -> ok(inf(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
length(mark(X)) -> mark(length(X))
length(ok(X)) -> ok(length(X))
proper(eq(X1, X2)) -> eq(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(true) -> ok(true)
proper(s(X)) -> s(proper(X))
proper(false) -> ok(false)
proper(inf(X)) -> inf(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
eq(ok(X1), ok(X2)) -> ok(eq(X1, X2))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 11
↳Size-Change Principle
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
TAKE(ok(X1), ok(X2)) -> TAKE(X1, X2)
TAKE(X1, mark(X2)) -> TAKE(X1, X2)
TAKE(mark(X1), X2) -> TAKE(X1, X2)
none
innermost
|
|
|
|
|
|
trivial
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳Usable Rules (Innermost)
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
S(ok(X)) -> S(X)
active(eq(0, 0)) -> mark(true)
active(eq(s(X), s(Y))) -> mark(eq(X, Y))
active(eq(X, Y)) -> mark(false)
active(inf(X)) -> mark(cons(X, inf(s(X))))
active(take(0, X)) -> mark(nil)
active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L)))
active(length(nil)) -> mark(0)
active(length(cons(X, L))) -> mark(s(length(L)))
active(inf(X)) -> inf(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(length(X)) -> length(active(X))
inf(mark(X)) -> mark(inf(X))
inf(ok(X)) -> ok(inf(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
length(mark(X)) -> mark(length(X))
length(ok(X)) -> ok(length(X))
proper(eq(X1, X2)) -> eq(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(true) -> ok(true)
proper(s(X)) -> s(proper(X))
proper(false) -> ok(false)
proper(inf(X)) -> inf(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
eq(ok(X1), ok(X2)) -> ok(eq(X1, X2))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 12
↳Size-Change Principle
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
S(ok(X)) -> S(X)
none
innermost
|
|
trivial
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳Usable Rules (Innermost)
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
LENGTH(ok(X)) -> LENGTH(X)
LENGTH(mark(X)) -> LENGTH(X)
active(eq(0, 0)) -> mark(true)
active(eq(s(X), s(Y))) -> mark(eq(X, Y))
active(eq(X, Y)) -> mark(false)
active(inf(X)) -> mark(cons(X, inf(s(X))))
active(take(0, X)) -> mark(nil)
active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L)))
active(length(nil)) -> mark(0)
active(length(cons(X, L))) -> mark(s(length(L)))
active(inf(X)) -> inf(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(length(X)) -> length(active(X))
inf(mark(X)) -> mark(inf(X))
inf(ok(X)) -> ok(inf(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
length(mark(X)) -> mark(length(X))
length(ok(X)) -> ok(length(X))
proper(eq(X1, X2)) -> eq(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(true) -> ok(true)
proper(s(X)) -> s(proper(X))
proper(false) -> ok(false)
proper(inf(X)) -> inf(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
eq(ok(X1), ok(X2)) -> ok(eq(X1, X2))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 13
↳Size-Change Principle
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
LENGTH(ok(X)) -> LENGTH(X)
LENGTH(mark(X)) -> LENGTH(X)
none
innermost
|
|
trivial
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳Usable Rules (Innermost)
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
INF(ok(X)) -> INF(X)
INF(mark(X)) -> INF(X)
active(eq(0, 0)) -> mark(true)
active(eq(s(X), s(Y))) -> mark(eq(X, Y))
active(eq(X, Y)) -> mark(false)
active(inf(X)) -> mark(cons(X, inf(s(X))))
active(take(0, X)) -> mark(nil)
active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L)))
active(length(nil)) -> mark(0)
active(length(cons(X, L))) -> mark(s(length(L)))
active(inf(X)) -> inf(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(length(X)) -> length(active(X))
inf(mark(X)) -> mark(inf(X))
inf(ok(X)) -> ok(inf(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
length(mark(X)) -> mark(length(X))
length(ok(X)) -> ok(length(X))
proper(eq(X1, X2)) -> eq(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(true) -> ok(true)
proper(s(X)) -> s(proper(X))
proper(false) -> ok(false)
proper(inf(X)) -> inf(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
eq(ok(X1), ok(X2)) -> ok(eq(X1, X2))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 14
↳Size-Change Principle
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
INF(ok(X)) -> INF(X)
INF(mark(X)) -> INF(X)
none
innermost
|
|
trivial
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳Usable Rules (Innermost)
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
EQ(ok(X1), ok(X2)) -> EQ(X1, X2)
active(eq(0, 0)) -> mark(true)
active(eq(s(X), s(Y))) -> mark(eq(X, Y))
active(eq(X, Y)) -> mark(false)
active(inf(X)) -> mark(cons(X, inf(s(X))))
active(take(0, X)) -> mark(nil)
active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L)))
active(length(nil)) -> mark(0)
active(length(cons(X, L))) -> mark(s(length(L)))
active(inf(X)) -> inf(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(length(X)) -> length(active(X))
inf(mark(X)) -> mark(inf(X))
inf(ok(X)) -> ok(inf(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
length(mark(X)) -> mark(length(X))
length(ok(X)) -> ok(length(X))
proper(eq(X1, X2)) -> eq(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(true) -> ok(true)
proper(s(X)) -> s(proper(X))
proper(false) -> ok(false)
proper(inf(X)) -> inf(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
eq(ok(X1), ok(X2)) -> ok(eq(X1, X2))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 15
↳Size-Change Principle
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
EQ(ok(X1), ok(X2)) -> EQ(X1, X2)
none
innermost
|
|
trivial
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳Usable Rules (Innermost)
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
ACTIVE(length(X)) -> ACTIVE(X)
ACTIVE(take(X1, X2)) -> ACTIVE(X2)
ACTIVE(take(X1, X2)) -> ACTIVE(X1)
ACTIVE(inf(X)) -> ACTIVE(X)
active(eq(0, 0)) -> mark(true)
active(eq(s(X), s(Y))) -> mark(eq(X, Y))
active(eq(X, Y)) -> mark(false)
active(inf(X)) -> mark(cons(X, inf(s(X))))
active(take(0, X)) -> mark(nil)
active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L)))
active(length(nil)) -> mark(0)
active(length(cons(X, L))) -> mark(s(length(L)))
active(inf(X)) -> inf(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(length(X)) -> length(active(X))
inf(mark(X)) -> mark(inf(X))
inf(ok(X)) -> ok(inf(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
length(mark(X)) -> mark(length(X))
length(ok(X)) -> ok(length(X))
proper(eq(X1, X2)) -> eq(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(true) -> ok(true)
proper(s(X)) -> s(proper(X))
proper(false) -> ok(false)
proper(inf(X)) -> inf(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
eq(ok(X1), ok(X2)) -> ok(eq(X1, X2))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 16
↳Size-Change Principle
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
ACTIVE(length(X)) -> ACTIVE(X)
ACTIVE(take(X1, X2)) -> ACTIVE(X2)
ACTIVE(take(X1, X2)) -> ACTIVE(X1)
ACTIVE(inf(X)) -> ACTIVE(X)
none
innermost
|
|
trivial
take(x1, x2) -> take(x1, x2)
inf(x1) -> inf(x1)
length(x1) -> length(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳Usable Rules (Innermost)
→DP Problem 9
↳UsableRules
PROPER(length(X)) -> PROPER(X)
PROPER(take(X1, X2)) -> PROPER(X2)
PROPER(take(X1, X2)) -> PROPER(X1)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(inf(X)) -> PROPER(X)
PROPER(s(X)) -> PROPER(X)
PROPER(eq(X1, X2)) -> PROPER(X2)
PROPER(eq(X1, X2)) -> PROPER(X1)
active(eq(0, 0)) -> mark(true)
active(eq(s(X), s(Y))) -> mark(eq(X, Y))
active(eq(X, Y)) -> mark(false)
active(inf(X)) -> mark(cons(X, inf(s(X))))
active(take(0, X)) -> mark(nil)
active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L)))
active(length(nil)) -> mark(0)
active(length(cons(X, L))) -> mark(s(length(L)))
active(inf(X)) -> inf(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(length(X)) -> length(active(X))
inf(mark(X)) -> mark(inf(X))
inf(ok(X)) -> ok(inf(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
length(mark(X)) -> mark(length(X))
length(ok(X)) -> ok(length(X))
proper(eq(X1, X2)) -> eq(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(true) -> ok(true)
proper(s(X)) -> s(proper(X))
proper(false) -> ok(false)
proper(inf(X)) -> inf(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
eq(ok(X1), ok(X2)) -> ok(eq(X1, X2))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 17
↳Size-Change Principle
→DP Problem 9
↳UsableRules
PROPER(length(X)) -> PROPER(X)
PROPER(take(X1, X2)) -> PROPER(X2)
PROPER(take(X1, X2)) -> PROPER(X1)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(inf(X)) -> PROPER(X)
PROPER(s(X)) -> PROPER(X)
PROPER(eq(X1, X2)) -> PROPER(X2)
PROPER(eq(X1, X2)) -> PROPER(X1)
none
innermost
|
|
trivial
eq(x1, x2) -> eq(x1, x2)
cons(x1, x2) -> cons(x1, x2)
take(x1, x2) -> take(x1, x2)
inf(x1) -> inf(x1)
s(x1) -> s(x1)
length(x1) -> length(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳Usable Rules (Innermost)
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
active(eq(0, 0)) -> mark(true)
active(eq(s(X), s(Y))) -> mark(eq(X, Y))
active(eq(X, Y)) -> mark(false)
active(inf(X)) -> mark(cons(X, inf(s(X))))
active(take(0, X)) -> mark(nil)
active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L)))
active(length(nil)) -> mark(0)
active(length(cons(X, L))) -> mark(s(length(L)))
active(inf(X)) -> inf(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(length(X)) -> length(active(X))
inf(mark(X)) -> mark(inf(X))
inf(ok(X)) -> ok(inf(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
length(mark(X)) -> mark(length(X))
length(ok(X)) -> ok(length(X))
proper(eq(X1, X2)) -> eq(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(true) -> ok(true)
proper(s(X)) -> s(proper(X))
proper(false) -> ok(false)
proper(inf(X)) -> inf(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
eq(ok(X1), ok(X2)) -> ok(eq(X1, X2))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
→DP Problem 18
↳Narrowing Transformation
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
eq(ok(X1), ok(X2)) -> ok(eq(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(mark(X1), X2) -> mark(take(X1, X2))
active(length(X)) -> length(active(X))
active(length(nil)) -> mark(0)
active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L)))
active(eq(X, Y)) -> mark(false)
active(take(X1, X2)) -> take(X1, active(X2))
active(take(X1, X2)) -> take(active(X1), X2)
active(eq(s(X), s(Y))) -> mark(eq(X, Y))
active(inf(X)) -> mark(cons(X, inf(s(X))))
active(take(0, X)) -> mark(nil)
active(inf(X)) -> inf(active(X))
active(length(cons(X, L))) -> mark(s(length(L)))
active(eq(0, 0)) -> mark(true)
length(ok(X)) -> ok(length(X))
length(mark(X)) -> mark(length(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
inf(ok(X)) -> ok(inf(X))
inf(mark(X)) -> mark(inf(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(true) -> ok(true)
proper(false) -> ok(false)
proper(length(X)) -> length(proper(X))
proper(inf(X)) -> inf(proper(X))
proper(eq(X1, X2)) -> eq(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
innermost
12 new Dependency Pairs are created:
TOP(ok(X)) -> TOP(active(X))
TOP(ok(length(X''))) -> TOP(length(active(X'')))
TOP(ok(length(nil))) -> TOP(mark(0))
TOP(ok(take(s(X''), cons(Y', L')))) -> TOP(mark(cons(Y', take(X'', L'))))
TOP(ok(eq(X'', Y'))) -> TOP(mark(false))
TOP(ok(take(X1', X2'))) -> TOP(take(X1', active(X2')))
TOP(ok(take(X1', X2'))) -> TOP(take(active(X1'), X2'))
TOP(ok(eq(s(X''), s(Y')))) -> TOP(mark(eq(X'', Y')))
TOP(ok(inf(X''))) -> TOP(mark(cons(X'', inf(s(X'')))))
TOP(ok(take(0, X''))) -> TOP(mark(nil))
TOP(ok(inf(X''))) -> TOP(inf(active(X'')))
TOP(ok(length(cons(X'', L')))) -> TOP(mark(s(length(L'))))
TOP(ok(eq(0, 0))) -> TOP(mark(true))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
→DP Problem 18
↳Nar
...
→DP Problem 19
↳Narrowing Transformation
TOP(ok(eq(0, 0))) -> TOP(mark(true))
TOP(ok(length(cons(X'', L')))) -> TOP(mark(s(length(L'))))
TOP(ok(inf(X''))) -> TOP(inf(active(X'')))
TOP(ok(take(0, X''))) -> TOP(mark(nil))
TOP(ok(inf(X''))) -> TOP(mark(cons(X'', inf(s(X'')))))
TOP(ok(eq(s(X''), s(Y')))) -> TOP(mark(eq(X'', Y')))
TOP(ok(take(X1', X2'))) -> TOP(take(active(X1'), X2'))
TOP(ok(take(X1', X2'))) -> TOP(take(X1', active(X2')))
TOP(ok(eq(X'', Y'))) -> TOP(mark(false))
TOP(ok(take(s(X''), cons(Y', L')))) -> TOP(mark(cons(Y', take(X'', L'))))
TOP(ok(length(nil))) -> TOP(mark(0))
TOP(ok(length(X''))) -> TOP(length(active(X'')))
TOP(mark(X)) -> TOP(proper(X))
eq(ok(X1), ok(X2)) -> ok(eq(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(mark(X1), X2) -> mark(take(X1, X2))
active(length(X)) -> length(active(X))
active(length(nil)) -> mark(0)
active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L)))
active(eq(X, Y)) -> mark(false)
active(take(X1, X2)) -> take(X1, active(X2))
active(take(X1, X2)) -> take(active(X1), X2)
active(eq(s(X), s(Y))) -> mark(eq(X, Y))
active(inf(X)) -> mark(cons(X, inf(s(X))))
active(take(0, X)) -> mark(nil)
active(inf(X)) -> inf(active(X))
active(length(cons(X, L))) -> mark(s(length(L)))
active(eq(0, 0)) -> mark(true)
length(ok(X)) -> ok(length(X))
length(mark(X)) -> mark(length(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
inf(ok(X)) -> ok(inf(X))
inf(mark(X)) -> mark(inf(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(true) -> ok(true)
proper(false) -> ok(false)
proper(length(X)) -> length(proper(X))
proper(inf(X)) -> inf(proper(X))
proper(eq(X1, X2)) -> eq(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
innermost
10 new Dependency Pairs are created:
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(cons(X1', X2'))) -> TOP(cons(proper(X1'), proper(X2')))
TOP(mark(take(X1', X2'))) -> TOP(take(proper(X1'), proper(X2')))
TOP(mark(nil)) -> TOP(ok(nil))
TOP(mark(true)) -> TOP(ok(true))
TOP(mark(false)) -> TOP(ok(false))
TOP(mark(length(X''))) -> TOP(length(proper(X'')))
TOP(mark(inf(X''))) -> TOP(inf(proper(X'')))
TOP(mark(eq(X1', X2'))) -> TOP(eq(proper(X1'), proper(X2')))
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(mark(0)) -> TOP(ok(0))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 9
↳UsableRules
→DP Problem 18
↳Nar
...
→DP Problem 20
↳Remaining Obligation(s)
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(mark(inf(X''))) -> TOP(inf(proper(X'')))
TOP(mark(take(X1', X2'))) -> TOP(take(proper(X1'), proper(X2')))
TOP(ok(inf(X''))) -> TOP(inf(active(X'')))
TOP(ok(inf(X''))) -> TOP(mark(cons(X'', inf(s(X'')))))
TOP(mark(eq(X1', X2'))) -> TOP(eq(proper(X1'), proper(X2')))
TOP(ok(eq(s(X''), s(Y')))) -> TOP(mark(eq(X'', Y')))
TOP(ok(take(X1', X2'))) -> TOP(take(active(X1'), X2'))
TOP(ok(take(X1', X2'))) -> TOP(take(X1', active(X2')))
TOP(mark(cons(X1', X2'))) -> TOP(cons(proper(X1'), proper(X2')))
TOP(ok(take(s(X''), cons(Y', L')))) -> TOP(mark(cons(Y', take(X'', L'))))
TOP(ok(length(X''))) -> TOP(length(active(X'')))
TOP(mark(length(X''))) -> TOP(length(proper(X'')))
TOP(ok(length(cons(X'', L')))) -> TOP(mark(s(length(L'))))
eq(ok(X1), ok(X2)) -> ok(eq(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(mark(X1), X2) -> mark(take(X1, X2))
active(length(X)) -> length(active(X))
active(length(nil)) -> mark(0)
active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L)))
active(eq(X, Y)) -> mark(false)
active(take(X1, X2)) -> take(X1, active(X2))
active(take(X1, X2)) -> take(active(X1), X2)
active(eq(s(X), s(Y))) -> mark(eq(X, Y))
active(inf(X)) -> mark(cons(X, inf(s(X))))
active(take(0, X)) -> mark(nil)
active(inf(X)) -> inf(active(X))
active(length(cons(X, L))) -> mark(s(length(L)))
active(eq(0, 0)) -> mark(true)
length(ok(X)) -> ok(length(X))
length(mark(X)) -> mark(length(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
inf(ok(X)) -> ok(inf(X))
inf(mark(X)) -> mark(inf(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(true) -> ok(true)
proper(false) -> ok(false)
proper(length(X)) -> length(proper(X))
proper(inf(X)) -> inf(proper(X))
proper(eq(X1, X2)) -> eq(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
innermost