R
↳Dependency Pair Analysis
ACTIVE(eq(s(X), s(Y))) -> EQ(X, Y)
ACTIVE(inf(X)) -> CONS(X, inf(s(X)))
ACTIVE(inf(X)) -> INF(s(X))
ACTIVE(inf(X)) -> S(X)
ACTIVE(take(s(X), cons(Y, L))) -> CONS(Y, take(X, L))
ACTIVE(take(s(X), cons(Y, L))) -> TAKE(X, L)
ACTIVE(length(cons(X, L))) -> S(length(L))
ACTIVE(length(cons(X, L))) -> LENGTH(L)
ACTIVE(inf(X)) -> INF(active(X))
ACTIVE(inf(X)) -> ACTIVE(X)
ACTIVE(take(X1, X2)) -> TAKE(active(X1), X2)
ACTIVE(take(X1, X2)) -> ACTIVE(X1)
ACTIVE(take(X1, X2)) -> TAKE(X1, active(X2))
ACTIVE(take(X1, X2)) -> ACTIVE(X2)
ACTIVE(length(X)) -> LENGTH(active(X))
ACTIVE(length(X)) -> ACTIVE(X)
INF(mark(X)) -> INF(X)
INF(ok(X)) -> INF(X)
TAKE(mark(X1), X2) -> TAKE(X1, X2)
TAKE(X1, mark(X2)) -> TAKE(X1, X2)
TAKE(ok(X1), ok(X2)) -> TAKE(X1, X2)
LENGTH(mark(X)) -> LENGTH(X)
LENGTH(ok(X)) -> LENGTH(X)
PROPER(eq(X1, X2)) -> EQ(proper(X1), proper(X2))
PROPER(eq(X1, X2)) -> PROPER(X1)
PROPER(eq(X1, X2)) -> PROPER(X2)
PROPER(s(X)) -> S(proper(X))
PROPER(s(X)) -> PROPER(X)
PROPER(inf(X)) -> INF(proper(X))
PROPER(inf(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(take(X1, X2)) -> TAKE(proper(X1), proper(X2))
PROPER(take(X1, X2)) -> PROPER(X1)
PROPER(take(X1, X2)) -> PROPER(X2)
PROPER(length(X)) -> LENGTH(proper(X))
PROPER(length(X)) -> PROPER(X)
EQ(ok(X1), ok(X2)) -> EQ(X1, X2)
S(ok(X)) -> S(X)
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 7
↳Polo
→DP Problem 8
↳Polo
→DP Problem 9
↳Remaining
INF(ok(X)) -> INF(X)
INF(mark(X)) -> INF(X)
active(eq(0, 0)) -> mark(true)
active(eq(s(X), s(Y))) -> mark(eq(X, Y))
active(eq(X, Y)) -> mark(false)
active(inf(X)) -> mark(cons(X, inf(s(X))))
active(take(0, X)) -> mark(nil)
active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L)))
active(length(nil)) -> mark(0)
active(length(cons(X, L))) -> mark(s(length(L)))
active(inf(X)) -> inf(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(length(X)) -> length(active(X))
inf(mark(X)) -> mark(inf(X))
inf(ok(X)) -> ok(inf(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
length(mark(X)) -> mark(length(X))
length(ok(X)) -> ok(length(X))
proper(eq(X1, X2)) -> eq(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(true) -> ok(true)
proper(s(X)) -> s(proper(X))
proper(false) -> ok(false)
proper(inf(X)) -> inf(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
eq(ok(X1), ok(X2)) -> ok(eq(X1, X2))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
INF(ok(X)) -> INF(X)
POL(INF(x1)) = x1 POL(mark(x1)) = x1 POL(ok(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 10
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 7
↳Polo
→DP Problem 8
↳Polo
→DP Problem 9
↳Remaining
INF(mark(X)) -> INF(X)
active(eq(0, 0)) -> mark(true)
active(eq(s(X), s(Y))) -> mark(eq(X, Y))
active(eq(X, Y)) -> mark(false)
active(inf(X)) -> mark(cons(X, inf(s(X))))
active(take(0, X)) -> mark(nil)
active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L)))
active(length(nil)) -> mark(0)
active(length(cons(X, L))) -> mark(s(length(L)))
active(inf(X)) -> inf(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(length(X)) -> length(active(X))
inf(mark(X)) -> mark(inf(X))
inf(ok(X)) -> ok(inf(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
length(mark(X)) -> mark(length(X))
length(ok(X)) -> ok(length(X))
proper(eq(X1, X2)) -> eq(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(true) -> ok(true)
proper(s(X)) -> s(proper(X))
proper(false) -> ok(false)
proper(inf(X)) -> inf(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
eq(ok(X1), ok(X2)) -> ok(eq(X1, X2))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
INF(mark(X)) -> INF(X)
POL(INF(x1)) = x1 POL(mark(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 10
↳Polo
...
→DP Problem 11
↳Dependency Graph
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 7
↳Polo
→DP Problem 8
↳Polo
→DP Problem 9
↳Remaining
active(eq(0, 0)) -> mark(true)
active(eq(s(X), s(Y))) -> mark(eq(X, Y))
active(eq(X, Y)) -> mark(false)
active(inf(X)) -> mark(cons(X, inf(s(X))))
active(take(0, X)) -> mark(nil)
active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L)))
active(length(nil)) -> mark(0)
active(length(cons(X, L))) -> mark(s(length(L)))
active(inf(X)) -> inf(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(length(X)) -> length(active(X))
inf(mark(X)) -> mark(inf(X))
inf(ok(X)) -> ok(inf(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
length(mark(X)) -> mark(length(X))
length(ok(X)) -> ok(length(X))
proper(eq(X1, X2)) -> eq(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(true) -> ok(true)
proper(s(X)) -> s(proper(X))
proper(false) -> ok(false)
proper(inf(X)) -> inf(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
eq(ok(X1), ok(X2)) -> ok(eq(X1, X2))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 7
↳Polo
→DP Problem 8
↳Polo
→DP Problem 9
↳Remaining
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
active(eq(0, 0)) -> mark(true)
active(eq(s(X), s(Y))) -> mark(eq(X, Y))
active(eq(X, Y)) -> mark(false)
active(inf(X)) -> mark(cons(X, inf(s(X))))
active(take(0, X)) -> mark(nil)
active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L)))
active(length(nil)) -> mark(0)
active(length(cons(X, L))) -> mark(s(length(L)))
active(inf(X)) -> inf(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(length(X)) -> length(active(X))
inf(mark(X)) -> mark(inf(X))
inf(ok(X)) -> ok(inf(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
length(mark(X)) -> mark(length(X))
length(ok(X)) -> ok(length(X))
proper(eq(X1, X2)) -> eq(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(true) -> ok(true)
proper(s(X)) -> s(proper(X))
proper(false) -> ok(false)
proper(inf(X)) -> inf(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
eq(ok(X1), ok(X2)) -> ok(eq(X1, X2))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
POL(ok(x1)) = 1 + x1 POL(CONS(x1, x2)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 12
↳Dependency Graph
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 7
↳Polo
→DP Problem 8
↳Polo
→DP Problem 9
↳Remaining
active(eq(0, 0)) -> mark(true)
active(eq(s(X), s(Y))) -> mark(eq(X, Y))
active(eq(X, Y)) -> mark(false)
active(inf(X)) -> mark(cons(X, inf(s(X))))
active(take(0, X)) -> mark(nil)
active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L)))
active(length(nil)) -> mark(0)
active(length(cons(X, L))) -> mark(s(length(L)))
active(inf(X)) -> inf(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(length(X)) -> length(active(X))
inf(mark(X)) -> mark(inf(X))
inf(ok(X)) -> ok(inf(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
length(mark(X)) -> mark(length(X))
length(ok(X)) -> ok(length(X))
proper(eq(X1, X2)) -> eq(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(true) -> ok(true)
proper(s(X)) -> s(proper(X))
proper(false) -> ok(false)
proper(inf(X)) -> inf(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
eq(ok(X1), ok(X2)) -> ok(eq(X1, X2))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polynomial Ordering
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 7
↳Polo
→DP Problem 8
↳Polo
→DP Problem 9
↳Remaining
TAKE(ok(X1), ok(X2)) -> TAKE(X1, X2)
TAKE(X1, mark(X2)) -> TAKE(X1, X2)
TAKE(mark(X1), X2) -> TAKE(X1, X2)
active(eq(0, 0)) -> mark(true)
active(eq(s(X), s(Y))) -> mark(eq(X, Y))
active(eq(X, Y)) -> mark(false)
active(inf(X)) -> mark(cons(X, inf(s(X))))
active(take(0, X)) -> mark(nil)
active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L)))
active(length(nil)) -> mark(0)
active(length(cons(X, L))) -> mark(s(length(L)))
active(inf(X)) -> inf(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(length(X)) -> length(active(X))
inf(mark(X)) -> mark(inf(X))
inf(ok(X)) -> ok(inf(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
length(mark(X)) -> mark(length(X))
length(ok(X)) -> ok(length(X))
proper(eq(X1, X2)) -> eq(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(true) -> ok(true)
proper(s(X)) -> s(proper(X))
proper(false) -> ok(false)
proper(inf(X)) -> inf(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
eq(ok(X1), ok(X2)) -> ok(eq(X1, X2))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
TAKE(ok(X1), ok(X2)) -> TAKE(X1, X2)
POL(TAKE(x1, x2)) = x1 POL(mark(x1)) = x1 POL(ok(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 13
↳Polynomial Ordering
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 7
↳Polo
→DP Problem 8
↳Polo
→DP Problem 9
↳Remaining
TAKE(X1, mark(X2)) -> TAKE(X1, X2)
TAKE(mark(X1), X2) -> TAKE(X1, X2)
active(eq(0, 0)) -> mark(true)
active(eq(s(X), s(Y))) -> mark(eq(X, Y))
active(eq(X, Y)) -> mark(false)
active(inf(X)) -> mark(cons(X, inf(s(X))))
active(take(0, X)) -> mark(nil)
active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L)))
active(length(nil)) -> mark(0)
active(length(cons(X, L))) -> mark(s(length(L)))
active(inf(X)) -> inf(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(length(X)) -> length(active(X))
inf(mark(X)) -> mark(inf(X))
inf(ok(X)) -> ok(inf(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
length(mark(X)) -> mark(length(X))
length(ok(X)) -> ok(length(X))
proper(eq(X1, X2)) -> eq(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(true) -> ok(true)
proper(s(X)) -> s(proper(X))
proper(false) -> ok(false)
proper(inf(X)) -> inf(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
eq(ok(X1), ok(X2)) -> ok(eq(X1, X2))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
TAKE(X1, mark(X2)) -> TAKE(X1, X2)
POL(TAKE(x1, x2)) = x2 POL(mark(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 13
↳Polo
...
→DP Problem 14
↳Polynomial Ordering
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 7
↳Polo
→DP Problem 8
↳Polo
→DP Problem 9
↳Remaining
TAKE(mark(X1), X2) -> TAKE(X1, X2)
active(eq(0, 0)) -> mark(true)
active(eq(s(X), s(Y))) -> mark(eq(X, Y))
active(eq(X, Y)) -> mark(false)
active(inf(X)) -> mark(cons(X, inf(s(X))))
active(take(0, X)) -> mark(nil)
active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L)))
active(length(nil)) -> mark(0)
active(length(cons(X, L))) -> mark(s(length(L)))
active(inf(X)) -> inf(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(length(X)) -> length(active(X))
inf(mark(X)) -> mark(inf(X))
inf(ok(X)) -> ok(inf(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
length(mark(X)) -> mark(length(X))
length(ok(X)) -> ok(length(X))
proper(eq(X1, X2)) -> eq(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(true) -> ok(true)
proper(s(X)) -> s(proper(X))
proper(false) -> ok(false)
proper(inf(X)) -> inf(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
eq(ok(X1), ok(X2)) -> ok(eq(X1, X2))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
TAKE(mark(X1), X2) -> TAKE(X1, X2)
POL(TAKE(x1, x2)) = x1 POL(mark(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 13
↳Polo
...
→DP Problem 15
↳Dependency Graph
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 7
↳Polo
→DP Problem 8
↳Polo
→DP Problem 9
↳Remaining
active(eq(0, 0)) -> mark(true)
active(eq(s(X), s(Y))) -> mark(eq(X, Y))
active(eq(X, Y)) -> mark(false)
active(inf(X)) -> mark(cons(X, inf(s(X))))
active(take(0, X)) -> mark(nil)
active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L)))
active(length(nil)) -> mark(0)
active(length(cons(X, L))) -> mark(s(length(L)))
active(inf(X)) -> inf(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(length(X)) -> length(active(X))
inf(mark(X)) -> mark(inf(X))
inf(ok(X)) -> ok(inf(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
length(mark(X)) -> mark(length(X))
length(ok(X)) -> ok(length(X))
proper(eq(X1, X2)) -> eq(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(true) -> ok(true)
proper(s(X)) -> s(proper(X))
proper(false) -> ok(false)
proper(inf(X)) -> inf(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
eq(ok(X1), ok(X2)) -> ok(eq(X1, X2))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polynomial Ordering
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 7
↳Polo
→DP Problem 8
↳Polo
→DP Problem 9
↳Remaining
S(ok(X)) -> S(X)
active(eq(0, 0)) -> mark(true)
active(eq(s(X), s(Y))) -> mark(eq(X, Y))
active(eq(X, Y)) -> mark(false)
active(inf(X)) -> mark(cons(X, inf(s(X))))
active(take(0, X)) -> mark(nil)
active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L)))
active(length(nil)) -> mark(0)
active(length(cons(X, L))) -> mark(s(length(L)))
active(inf(X)) -> inf(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(length(X)) -> length(active(X))
inf(mark(X)) -> mark(inf(X))
inf(ok(X)) -> ok(inf(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
length(mark(X)) -> mark(length(X))
length(ok(X)) -> ok(length(X))
proper(eq(X1, X2)) -> eq(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(true) -> ok(true)
proper(s(X)) -> s(proper(X))
proper(false) -> ok(false)
proper(inf(X)) -> inf(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
eq(ok(X1), ok(X2)) -> ok(eq(X1, X2))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
S(ok(X)) -> S(X)
POL(S(x1)) = x1 POL(ok(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 16
↳Dependency Graph
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 7
↳Polo
→DP Problem 8
↳Polo
→DP Problem 9
↳Remaining
active(eq(0, 0)) -> mark(true)
active(eq(s(X), s(Y))) -> mark(eq(X, Y))
active(eq(X, Y)) -> mark(false)
active(inf(X)) -> mark(cons(X, inf(s(X))))
active(take(0, X)) -> mark(nil)
active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L)))
active(length(nil)) -> mark(0)
active(length(cons(X, L))) -> mark(s(length(L)))
active(inf(X)) -> inf(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(length(X)) -> length(active(X))
inf(mark(X)) -> mark(inf(X))
inf(ok(X)) -> ok(inf(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
length(mark(X)) -> mark(length(X))
length(ok(X)) -> ok(length(X))
proper(eq(X1, X2)) -> eq(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(true) -> ok(true)
proper(s(X)) -> s(proper(X))
proper(false) -> ok(false)
proper(inf(X)) -> inf(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
eq(ok(X1), ok(X2)) -> ok(eq(X1, X2))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polynomial Ordering
→DP Problem 6
↳Polo
→DP Problem 7
↳Polo
→DP Problem 8
↳Polo
→DP Problem 9
↳Remaining
LENGTH(ok(X)) -> LENGTH(X)
LENGTH(mark(X)) -> LENGTH(X)
active(eq(0, 0)) -> mark(true)
active(eq(s(X), s(Y))) -> mark(eq(X, Y))
active(eq(X, Y)) -> mark(false)
active(inf(X)) -> mark(cons(X, inf(s(X))))
active(take(0, X)) -> mark(nil)
active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L)))
active(length(nil)) -> mark(0)
active(length(cons(X, L))) -> mark(s(length(L)))
active(inf(X)) -> inf(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(length(X)) -> length(active(X))
inf(mark(X)) -> mark(inf(X))
inf(ok(X)) -> ok(inf(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
length(mark(X)) -> mark(length(X))
length(ok(X)) -> ok(length(X))
proper(eq(X1, X2)) -> eq(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(true) -> ok(true)
proper(s(X)) -> s(proper(X))
proper(false) -> ok(false)
proper(inf(X)) -> inf(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
eq(ok(X1), ok(X2)) -> ok(eq(X1, X2))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
LENGTH(ok(X)) -> LENGTH(X)
POL(mark(x1)) = x1 POL(ok(x1)) = 1 + x1 POL(LENGTH(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 17
↳Polynomial Ordering
→DP Problem 6
↳Polo
→DP Problem 7
↳Polo
→DP Problem 8
↳Polo
→DP Problem 9
↳Remaining
LENGTH(mark(X)) -> LENGTH(X)
active(eq(0, 0)) -> mark(true)
active(eq(s(X), s(Y))) -> mark(eq(X, Y))
active(eq(X, Y)) -> mark(false)
active(inf(X)) -> mark(cons(X, inf(s(X))))
active(take(0, X)) -> mark(nil)
active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L)))
active(length(nil)) -> mark(0)
active(length(cons(X, L))) -> mark(s(length(L)))
active(inf(X)) -> inf(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(length(X)) -> length(active(X))
inf(mark(X)) -> mark(inf(X))
inf(ok(X)) -> ok(inf(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
length(mark(X)) -> mark(length(X))
length(ok(X)) -> ok(length(X))
proper(eq(X1, X2)) -> eq(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(true) -> ok(true)
proper(s(X)) -> s(proper(X))
proper(false) -> ok(false)
proper(inf(X)) -> inf(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
eq(ok(X1), ok(X2)) -> ok(eq(X1, X2))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
LENGTH(mark(X)) -> LENGTH(X)
POL(mark(x1)) = 1 + x1 POL(LENGTH(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 17
↳Polo
...
→DP Problem 18
↳Dependency Graph
→DP Problem 6
↳Polo
→DP Problem 7
↳Polo
→DP Problem 8
↳Polo
→DP Problem 9
↳Remaining
active(eq(0, 0)) -> mark(true)
active(eq(s(X), s(Y))) -> mark(eq(X, Y))
active(eq(X, Y)) -> mark(false)
active(inf(X)) -> mark(cons(X, inf(s(X))))
active(take(0, X)) -> mark(nil)
active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L)))
active(length(nil)) -> mark(0)
active(length(cons(X, L))) -> mark(s(length(L)))
active(inf(X)) -> inf(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(length(X)) -> length(active(X))
inf(mark(X)) -> mark(inf(X))
inf(ok(X)) -> ok(inf(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
length(mark(X)) -> mark(length(X))
length(ok(X)) -> ok(length(X))
proper(eq(X1, X2)) -> eq(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(true) -> ok(true)
proper(s(X)) -> s(proper(X))
proper(false) -> ok(false)
proper(inf(X)) -> inf(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
eq(ok(X1), ok(X2)) -> ok(eq(X1, X2))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polynomial Ordering
→DP Problem 7
↳Polo
→DP Problem 8
↳Polo
→DP Problem 9
↳Remaining
EQ(ok(X1), ok(X2)) -> EQ(X1, X2)
active(eq(0, 0)) -> mark(true)
active(eq(s(X), s(Y))) -> mark(eq(X, Y))
active(eq(X, Y)) -> mark(false)
active(inf(X)) -> mark(cons(X, inf(s(X))))
active(take(0, X)) -> mark(nil)
active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L)))
active(length(nil)) -> mark(0)
active(length(cons(X, L))) -> mark(s(length(L)))
active(inf(X)) -> inf(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(length(X)) -> length(active(X))
inf(mark(X)) -> mark(inf(X))
inf(ok(X)) -> ok(inf(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
length(mark(X)) -> mark(length(X))
length(ok(X)) -> ok(length(X))
proper(eq(X1, X2)) -> eq(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(true) -> ok(true)
proper(s(X)) -> s(proper(X))
proper(false) -> ok(false)
proper(inf(X)) -> inf(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
eq(ok(X1), ok(X2)) -> ok(eq(X1, X2))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
EQ(ok(X1), ok(X2)) -> EQ(X1, X2)
POL(EQ(x1, x2)) = x1 POL(ok(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 19
↳Dependency Graph
→DP Problem 7
↳Polo
→DP Problem 8
↳Polo
→DP Problem 9
↳Remaining
active(eq(0, 0)) -> mark(true)
active(eq(s(X), s(Y))) -> mark(eq(X, Y))
active(eq(X, Y)) -> mark(false)
active(inf(X)) -> mark(cons(X, inf(s(X))))
active(take(0, X)) -> mark(nil)
active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L)))
active(length(nil)) -> mark(0)
active(length(cons(X, L))) -> mark(s(length(L)))
active(inf(X)) -> inf(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(length(X)) -> length(active(X))
inf(mark(X)) -> mark(inf(X))
inf(ok(X)) -> ok(inf(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
length(mark(X)) -> mark(length(X))
length(ok(X)) -> ok(length(X))
proper(eq(X1, X2)) -> eq(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(true) -> ok(true)
proper(s(X)) -> s(proper(X))
proper(false) -> ok(false)
proper(inf(X)) -> inf(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
eq(ok(X1), ok(X2)) -> ok(eq(X1, X2))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 7
↳Polynomial Ordering
→DP Problem 8
↳Polo
→DP Problem 9
↳Remaining
ACTIVE(length(X)) -> ACTIVE(X)
ACTIVE(take(X1, X2)) -> ACTIVE(X2)
ACTIVE(take(X1, X2)) -> ACTIVE(X1)
ACTIVE(inf(X)) -> ACTIVE(X)
active(eq(0, 0)) -> mark(true)
active(eq(s(X), s(Y))) -> mark(eq(X, Y))
active(eq(X, Y)) -> mark(false)
active(inf(X)) -> mark(cons(X, inf(s(X))))
active(take(0, X)) -> mark(nil)
active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L)))
active(length(nil)) -> mark(0)
active(length(cons(X, L))) -> mark(s(length(L)))
active(inf(X)) -> inf(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(length(X)) -> length(active(X))
inf(mark(X)) -> mark(inf(X))
inf(ok(X)) -> ok(inf(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
length(mark(X)) -> mark(length(X))
length(ok(X)) -> ok(length(X))
proper(eq(X1, X2)) -> eq(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(true) -> ok(true)
proper(s(X)) -> s(proper(X))
proper(false) -> ok(false)
proper(inf(X)) -> inf(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
eq(ok(X1), ok(X2)) -> ok(eq(X1, X2))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
ACTIVE(length(X)) -> ACTIVE(X)
POL(ACTIVE(x1)) = x1 POL(take(x1, x2)) = x1 + x2 POL(inf(x1)) = x1 POL(length(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 7
↳Polo
→DP Problem 20
↳Polynomial Ordering
→DP Problem 8
↳Polo
→DP Problem 9
↳Remaining
ACTIVE(take(X1, X2)) -> ACTIVE(X2)
ACTIVE(take(X1, X2)) -> ACTIVE(X1)
ACTIVE(inf(X)) -> ACTIVE(X)
active(eq(0, 0)) -> mark(true)
active(eq(s(X), s(Y))) -> mark(eq(X, Y))
active(eq(X, Y)) -> mark(false)
active(inf(X)) -> mark(cons(X, inf(s(X))))
active(take(0, X)) -> mark(nil)
active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L)))
active(length(nil)) -> mark(0)
active(length(cons(X, L))) -> mark(s(length(L)))
active(inf(X)) -> inf(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(length(X)) -> length(active(X))
inf(mark(X)) -> mark(inf(X))
inf(ok(X)) -> ok(inf(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
length(mark(X)) -> mark(length(X))
length(ok(X)) -> ok(length(X))
proper(eq(X1, X2)) -> eq(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(true) -> ok(true)
proper(s(X)) -> s(proper(X))
proper(false) -> ok(false)
proper(inf(X)) -> inf(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
eq(ok(X1), ok(X2)) -> ok(eq(X1, X2))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
ACTIVE(take(X1, X2)) -> ACTIVE(X2)
ACTIVE(take(X1, X2)) -> ACTIVE(X1)
POL(ACTIVE(x1)) = x1 POL(take(x1, x2)) = 1 + x1 + x2 POL(inf(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 7
↳Polo
→DP Problem 20
↳Polo
...
→DP Problem 21
↳Polynomial Ordering
→DP Problem 8
↳Polo
→DP Problem 9
↳Remaining
ACTIVE(inf(X)) -> ACTIVE(X)
active(eq(0, 0)) -> mark(true)
active(eq(s(X), s(Y))) -> mark(eq(X, Y))
active(eq(X, Y)) -> mark(false)
active(inf(X)) -> mark(cons(X, inf(s(X))))
active(take(0, X)) -> mark(nil)
active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L)))
active(length(nil)) -> mark(0)
active(length(cons(X, L))) -> mark(s(length(L)))
active(inf(X)) -> inf(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(length(X)) -> length(active(X))
inf(mark(X)) -> mark(inf(X))
inf(ok(X)) -> ok(inf(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
length(mark(X)) -> mark(length(X))
length(ok(X)) -> ok(length(X))
proper(eq(X1, X2)) -> eq(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(true) -> ok(true)
proper(s(X)) -> s(proper(X))
proper(false) -> ok(false)
proper(inf(X)) -> inf(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
eq(ok(X1), ok(X2)) -> ok(eq(X1, X2))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
ACTIVE(inf(X)) -> ACTIVE(X)
POL(ACTIVE(x1)) = x1 POL(inf(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 7
↳Polo
→DP Problem 20
↳Polo
...
→DP Problem 22
↳Dependency Graph
→DP Problem 8
↳Polo
→DP Problem 9
↳Remaining
active(eq(0, 0)) -> mark(true)
active(eq(s(X), s(Y))) -> mark(eq(X, Y))
active(eq(X, Y)) -> mark(false)
active(inf(X)) -> mark(cons(X, inf(s(X))))
active(take(0, X)) -> mark(nil)
active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L)))
active(length(nil)) -> mark(0)
active(length(cons(X, L))) -> mark(s(length(L)))
active(inf(X)) -> inf(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(length(X)) -> length(active(X))
inf(mark(X)) -> mark(inf(X))
inf(ok(X)) -> ok(inf(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
length(mark(X)) -> mark(length(X))
length(ok(X)) -> ok(length(X))
proper(eq(X1, X2)) -> eq(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(true) -> ok(true)
proper(s(X)) -> s(proper(X))
proper(false) -> ok(false)
proper(inf(X)) -> inf(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
eq(ok(X1), ok(X2)) -> ok(eq(X1, X2))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 7
↳Polo
→DP Problem 8
↳Polynomial Ordering
→DP Problem 9
↳Remaining
PROPER(length(X)) -> PROPER(X)
PROPER(take(X1, X2)) -> PROPER(X2)
PROPER(take(X1, X2)) -> PROPER(X1)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(inf(X)) -> PROPER(X)
PROPER(s(X)) -> PROPER(X)
PROPER(eq(X1, X2)) -> PROPER(X2)
PROPER(eq(X1, X2)) -> PROPER(X1)
active(eq(0, 0)) -> mark(true)
active(eq(s(X), s(Y))) -> mark(eq(X, Y))
active(eq(X, Y)) -> mark(false)
active(inf(X)) -> mark(cons(X, inf(s(X))))
active(take(0, X)) -> mark(nil)
active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L)))
active(length(nil)) -> mark(0)
active(length(cons(X, L))) -> mark(s(length(L)))
active(inf(X)) -> inf(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(length(X)) -> length(active(X))
inf(mark(X)) -> mark(inf(X))
inf(ok(X)) -> ok(inf(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
length(mark(X)) -> mark(length(X))
length(ok(X)) -> ok(length(X))
proper(eq(X1, X2)) -> eq(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(true) -> ok(true)
proper(s(X)) -> s(proper(X))
proper(false) -> ok(false)
proper(inf(X)) -> inf(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
eq(ok(X1), ok(X2)) -> ok(eq(X1, X2))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
PROPER(length(X)) -> PROPER(X)
POL(eq(x1, x2)) = x1 + x2 POL(PROPER(x1)) = x1 POL(cons(x1, x2)) = x1 + x2 POL(take(x1, x2)) = x1 + x2 POL(inf(x1)) = x1 POL(s(x1)) = x1 POL(length(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 7
↳Polo
→DP Problem 8
↳Polo
→DP Problem 23
↳Polynomial Ordering
→DP Problem 9
↳Remaining
PROPER(take(X1, X2)) -> PROPER(X2)
PROPER(take(X1, X2)) -> PROPER(X1)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(inf(X)) -> PROPER(X)
PROPER(s(X)) -> PROPER(X)
PROPER(eq(X1, X2)) -> PROPER(X2)
PROPER(eq(X1, X2)) -> PROPER(X1)
active(eq(0, 0)) -> mark(true)
active(eq(s(X), s(Y))) -> mark(eq(X, Y))
active(eq(X, Y)) -> mark(false)
active(inf(X)) -> mark(cons(X, inf(s(X))))
active(take(0, X)) -> mark(nil)
active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L)))
active(length(nil)) -> mark(0)
active(length(cons(X, L))) -> mark(s(length(L)))
active(inf(X)) -> inf(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(length(X)) -> length(active(X))
inf(mark(X)) -> mark(inf(X))
inf(ok(X)) -> ok(inf(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
length(mark(X)) -> mark(length(X))
length(ok(X)) -> ok(length(X))
proper(eq(X1, X2)) -> eq(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(true) -> ok(true)
proper(s(X)) -> s(proper(X))
proper(false) -> ok(false)
proper(inf(X)) -> inf(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
eq(ok(X1), ok(X2)) -> ok(eq(X1, X2))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
PROPER(take(X1, X2)) -> PROPER(X2)
PROPER(take(X1, X2)) -> PROPER(X1)
POL(eq(x1, x2)) = x1 + x2 POL(PROPER(x1)) = x1 POL(cons(x1, x2)) = x1 + x2 POL(take(x1, x2)) = 1 + x1 + x2 POL(inf(x1)) = x1 POL(s(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 7
↳Polo
→DP Problem 8
↳Polo
→DP Problem 23
↳Polo
...
→DP Problem 24
↳Polynomial Ordering
→DP Problem 9
↳Remaining
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(inf(X)) -> PROPER(X)
PROPER(s(X)) -> PROPER(X)
PROPER(eq(X1, X2)) -> PROPER(X2)
PROPER(eq(X1, X2)) -> PROPER(X1)
active(eq(0, 0)) -> mark(true)
active(eq(s(X), s(Y))) -> mark(eq(X, Y))
active(eq(X, Y)) -> mark(false)
active(inf(X)) -> mark(cons(X, inf(s(X))))
active(take(0, X)) -> mark(nil)
active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L)))
active(length(nil)) -> mark(0)
active(length(cons(X, L))) -> mark(s(length(L)))
active(inf(X)) -> inf(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(length(X)) -> length(active(X))
inf(mark(X)) -> mark(inf(X))
inf(ok(X)) -> ok(inf(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
length(mark(X)) -> mark(length(X))
length(ok(X)) -> ok(length(X))
proper(eq(X1, X2)) -> eq(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(true) -> ok(true)
proper(s(X)) -> s(proper(X))
proper(false) -> ok(false)
proper(inf(X)) -> inf(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
eq(ok(X1), ok(X2)) -> ok(eq(X1, X2))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
POL(eq(x1, x2)) = x1 + x2 POL(PROPER(x1)) = x1 POL(cons(x1, x2)) = 1 + x1 + x2 POL(inf(x1)) = x1 POL(s(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 7
↳Polo
→DP Problem 8
↳Polo
→DP Problem 23
↳Polo
...
→DP Problem 25
↳Polynomial Ordering
→DP Problem 9
↳Remaining
PROPER(inf(X)) -> PROPER(X)
PROPER(s(X)) -> PROPER(X)
PROPER(eq(X1, X2)) -> PROPER(X2)
PROPER(eq(X1, X2)) -> PROPER(X1)
active(eq(0, 0)) -> mark(true)
active(eq(s(X), s(Y))) -> mark(eq(X, Y))
active(eq(X, Y)) -> mark(false)
active(inf(X)) -> mark(cons(X, inf(s(X))))
active(take(0, X)) -> mark(nil)
active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L)))
active(length(nil)) -> mark(0)
active(length(cons(X, L))) -> mark(s(length(L)))
active(inf(X)) -> inf(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(length(X)) -> length(active(X))
inf(mark(X)) -> mark(inf(X))
inf(ok(X)) -> ok(inf(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
length(mark(X)) -> mark(length(X))
length(ok(X)) -> ok(length(X))
proper(eq(X1, X2)) -> eq(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(true) -> ok(true)
proper(s(X)) -> s(proper(X))
proper(false) -> ok(false)
proper(inf(X)) -> inf(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
eq(ok(X1), ok(X2)) -> ok(eq(X1, X2))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
PROPER(inf(X)) -> PROPER(X)
POL(eq(x1, x2)) = x1 + x2 POL(PROPER(x1)) = x1 POL(inf(x1)) = 1 + x1 POL(s(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 7
↳Polo
→DP Problem 8
↳Polo
→DP Problem 23
↳Polo
...
→DP Problem 26
↳Polynomial Ordering
→DP Problem 9
↳Remaining
PROPER(s(X)) -> PROPER(X)
PROPER(eq(X1, X2)) -> PROPER(X2)
PROPER(eq(X1, X2)) -> PROPER(X1)
active(eq(0, 0)) -> mark(true)
active(eq(s(X), s(Y))) -> mark(eq(X, Y))
active(eq(X, Y)) -> mark(false)
active(inf(X)) -> mark(cons(X, inf(s(X))))
active(take(0, X)) -> mark(nil)
active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L)))
active(length(nil)) -> mark(0)
active(length(cons(X, L))) -> mark(s(length(L)))
active(inf(X)) -> inf(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(length(X)) -> length(active(X))
inf(mark(X)) -> mark(inf(X))
inf(ok(X)) -> ok(inf(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
length(mark(X)) -> mark(length(X))
length(ok(X)) -> ok(length(X))
proper(eq(X1, X2)) -> eq(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(true) -> ok(true)
proper(s(X)) -> s(proper(X))
proper(false) -> ok(false)
proper(inf(X)) -> inf(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
eq(ok(X1), ok(X2)) -> ok(eq(X1, X2))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
PROPER(s(X)) -> PROPER(X)
POL(eq(x1, x2)) = x1 + x2 POL(PROPER(x1)) = x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 7
↳Polo
→DP Problem 8
↳Polo
→DP Problem 23
↳Polo
...
→DP Problem 27
↳Polynomial Ordering
→DP Problem 9
↳Remaining
PROPER(eq(X1, X2)) -> PROPER(X2)
PROPER(eq(X1, X2)) -> PROPER(X1)
active(eq(0, 0)) -> mark(true)
active(eq(s(X), s(Y))) -> mark(eq(X, Y))
active(eq(X, Y)) -> mark(false)
active(inf(X)) -> mark(cons(X, inf(s(X))))
active(take(0, X)) -> mark(nil)
active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L)))
active(length(nil)) -> mark(0)
active(length(cons(X, L))) -> mark(s(length(L)))
active(inf(X)) -> inf(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(length(X)) -> length(active(X))
inf(mark(X)) -> mark(inf(X))
inf(ok(X)) -> ok(inf(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
length(mark(X)) -> mark(length(X))
length(ok(X)) -> ok(length(X))
proper(eq(X1, X2)) -> eq(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(true) -> ok(true)
proper(s(X)) -> s(proper(X))
proper(false) -> ok(false)
proper(inf(X)) -> inf(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
eq(ok(X1), ok(X2)) -> ok(eq(X1, X2))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
PROPER(eq(X1, X2)) -> PROPER(X2)
PROPER(eq(X1, X2)) -> PROPER(X1)
POL(eq(x1, x2)) = 1 + x1 + x2 POL(PROPER(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 7
↳Polo
→DP Problem 8
↳Polo
→DP Problem 23
↳Polo
...
→DP Problem 28
↳Dependency Graph
→DP Problem 9
↳Remaining
active(eq(0, 0)) -> mark(true)
active(eq(s(X), s(Y))) -> mark(eq(X, Y))
active(eq(X, Y)) -> mark(false)
active(inf(X)) -> mark(cons(X, inf(s(X))))
active(take(0, X)) -> mark(nil)
active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L)))
active(length(nil)) -> mark(0)
active(length(cons(X, L))) -> mark(s(length(L)))
active(inf(X)) -> inf(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(length(X)) -> length(active(X))
inf(mark(X)) -> mark(inf(X))
inf(ok(X)) -> ok(inf(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
length(mark(X)) -> mark(length(X))
length(ok(X)) -> ok(length(X))
proper(eq(X1, X2)) -> eq(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(true) -> ok(true)
proper(s(X)) -> s(proper(X))
proper(false) -> ok(false)
proper(inf(X)) -> inf(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
eq(ok(X1), ok(X2)) -> ok(eq(X1, X2))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Polo
→DP Problem 7
↳Polo
→DP Problem 8
↳Polo
→DP Problem 9
↳Remaining Obligation(s)
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
active(eq(0, 0)) -> mark(true)
active(eq(s(X), s(Y))) -> mark(eq(X, Y))
active(eq(X, Y)) -> mark(false)
active(inf(X)) -> mark(cons(X, inf(s(X))))
active(take(0, X)) -> mark(nil)
active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L)))
active(length(nil)) -> mark(0)
active(length(cons(X, L))) -> mark(s(length(L)))
active(inf(X)) -> inf(active(X))
active(take(X1, X2)) -> take(active(X1), X2)
active(take(X1, X2)) -> take(X1, active(X2))
active(length(X)) -> length(active(X))
inf(mark(X)) -> mark(inf(X))
inf(ok(X)) -> ok(inf(X))
take(mark(X1), X2) -> mark(take(X1, X2))
take(X1, mark(X2)) -> mark(take(X1, X2))
take(ok(X1), ok(X2)) -> ok(take(X1, X2))
length(mark(X)) -> mark(length(X))
length(ok(X)) -> ok(length(X))
proper(eq(X1, X2)) -> eq(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(true) -> ok(true)
proper(s(X)) -> s(proper(X))
proper(false) -> ok(false)
proper(inf(X)) -> inf(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(take(X1, X2)) -> take(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
eq(ok(X1), ok(X2)) -> ok(eq(X1, X2))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost