Term Rewriting System R:
[X, Z, N, Y, X1, X2]
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
2ndspos(0, Z) -> rnil
2ndspos(s(N), cons(X, ncons(Y, Z))) -> rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) -> rnil
2ndsneg(s(N), cons(X, ncons(Y, Z))) -> rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(X)
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(X) -> X
Innermost Termination of R to be shown.
R
↳Removing Redundant Rules for Innermost Termination
Removing the following rules from R which left hand sides contain non normal subterms
2ndspos(s(N), cons(X, ncons(Y, Z))) -> rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z)))
2ndsneg(s(N), cons(X, ncons(Y, Z))) -> rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z)))
R
↳RRRI
→TRS2
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
FROM(X) -> CONS(X, nfrom(s(X)))
PI(X) -> 2NDSPOS(X, from(0))
PI(X) -> FROM(0)
PLUS(s(X), Y) -> PLUS(X, Y)
TIMES(s(X), Y) -> PLUS(Y, times(X, Y))
TIMES(s(X), Y) -> TIMES(X, Y)
SQUARE(X) -> TIMES(X, X)
ACTIVATE(nfrom(X)) -> FROM(X)
ACTIVATE(ncons(X1, X2)) -> CONS(X1, X2)
Furthermore, R contains two SCCs.
R
↳RRRI
→TRS2
↳DPs
→DP Problem 1
↳Size-Change Principle
→DP Problem 2
↳SCP
Dependency Pair:
PLUS(s(X), Y) -> PLUS(X, Y)
Rules:
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
cons(X1, X2) -> ncons(X1, X2)
2ndspos(0, Z) -> rnil
2ndsneg(0, Z) -> rnil
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
activate(nfrom(X)) -> from(X)
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(X) -> X
We number the DPs as follows:
- PLUS(s(X), Y) -> PLUS(X, Y)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
s(x1) -> s(x1)
We obtain no new DP problems.
R
↳RRRI
→TRS2
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳Size-Change Principle
Dependency Pair:
TIMES(s(X), Y) -> TIMES(X, Y)
Rules:
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
cons(X1, X2) -> ncons(X1, X2)
2ndspos(0, Z) -> rnil
2ndsneg(0, Z) -> rnil
pi(X) -> 2ndspos(X, from(0))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
times(0, Y) -> 0
times(s(X), Y) -> plus(Y, times(X, Y))
square(X) -> times(X, X)
activate(nfrom(X)) -> from(X)
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(X) -> X
We number the DPs as follows:
- TIMES(s(X), Y) -> TIMES(X, Y)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
s(x1) -> s(x1)
We obtain no new DP problems.
Innermost Termination of R successfully shown.
Duration:
0:01 minutes