R
↳Dependency Pair Analysis
AND(true, X) -> ACTIVATE(X)
IF(true, X, Y) -> ACTIVATE(X)
IF(false, X, Y) -> ACTIVATE(Y)
ADD(0, X) -> ACTIVATE(X)
ADD(s(X), Y) -> S(nadd(activate(X), activate(Y)))
ADD(s(X), Y) -> ACTIVATE(X)
ADD(s(X), Y) -> ACTIVATE(Y)
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Y)
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(X)
FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z)
FROM(X) -> ACTIVATE(X)
ACTIVATE(nadd(X1, X2)) -> ADD(X1, X2)
ACTIVATE(nfirst(X1, X2)) -> FIRST(X1, X2)
ACTIVATE(nfrom(X)) -> FROM(X)
ACTIVATE(ns(X)) -> S(X)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
FROM(X) -> ACTIVATE(X)
ACTIVATE(nfrom(X)) -> FROM(X)
ADD(0, X) -> ACTIVATE(X)
ACTIVATE(nadd(X1, X2)) -> ADD(X1, X2)
and(true, X) -> activate(X)
and(false, Y) -> false
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
add(0, X) -> activate(X)
add(s(X), Y) -> s(nadd(activate(X), activate(Y)))
add(X1, X2) -> nadd(X1, X2)
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(activate(Y), nfirst(activate(X), activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(activate(X), nfrom(ns(activate(X))))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nadd(X1, X2)) -> add(X1, X2)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(ns(X)) -> s(X)
activate(X) -> X
innermost
two new Dependency Pairs are created:
ADD(0, X) -> ACTIVATE(X)
ADD(0, nadd(X1'', X2'')) -> ACTIVATE(nadd(X1'', X2''))
ADD(0, nfrom(X'')) -> ACTIVATE(nfrom(X''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
ACTIVATE(nfrom(X)) -> FROM(X)
ADD(0, nfrom(X'')) -> ACTIVATE(nfrom(X''))
ADD(0, nadd(X1'', X2'')) -> ACTIVATE(nadd(X1'', X2''))
ACTIVATE(nadd(X1, X2)) -> ADD(X1, X2)
FROM(X) -> ACTIVATE(X)
and(true, X) -> activate(X)
and(false, Y) -> false
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
add(0, X) -> activate(X)
add(s(X), Y) -> s(nadd(activate(X), activate(Y)))
add(X1, X2) -> nadd(X1, X2)
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(activate(Y), nfirst(activate(X), activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(activate(X), nfrom(ns(activate(X))))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nadd(X1, X2)) -> add(X1, X2)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(ns(X)) -> s(X)
activate(X) -> X
innermost
two new Dependency Pairs are created:
FROM(X) -> ACTIVATE(X)
FROM(nadd(X1'', X2'')) -> ACTIVATE(nadd(X1'', X2''))
FROM(nfrom(X'')) -> ACTIVATE(nfrom(X''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 3
↳Forward Instantiation Transformation
FROM(nfrom(X'')) -> ACTIVATE(nfrom(X''))
ADD(0, nfrom(X'')) -> ACTIVATE(nfrom(X''))
ADD(0, nadd(X1'', X2'')) -> ACTIVATE(nadd(X1'', X2''))
ACTIVATE(nadd(X1, X2)) -> ADD(X1, X2)
FROM(nadd(X1'', X2'')) -> ACTIVATE(nadd(X1'', X2''))
ACTIVATE(nfrom(X)) -> FROM(X)
and(true, X) -> activate(X)
and(false, Y) -> false
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
add(0, X) -> activate(X)
add(s(X), Y) -> s(nadd(activate(X), activate(Y)))
add(X1, X2) -> nadd(X1, X2)
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(activate(Y), nfirst(activate(X), activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(activate(X), nfrom(ns(activate(X))))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nadd(X1, X2)) -> add(X1, X2)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(ns(X)) -> s(X)
activate(X) -> X
innermost
two new Dependency Pairs are created:
ACTIVATE(nadd(X1, X2)) -> ADD(X1, X2)
ACTIVATE(nadd(0, nadd(X1'''', X2''''))) -> ADD(0, nadd(X1'''', X2''''))
ACTIVATE(nadd(0, nfrom(X''''))) -> ADD(0, nfrom(X''''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 4
↳Forward Instantiation Transformation
ADD(0, nfrom(X'')) -> ACTIVATE(nfrom(X''))
ACTIVATE(nadd(0, nfrom(X''''))) -> ADD(0, nfrom(X''''))
ADD(0, nadd(X1'', X2'')) -> ACTIVATE(nadd(X1'', X2''))
ACTIVATE(nadd(0, nadd(X1'''', X2''''))) -> ADD(0, nadd(X1'''', X2''''))
FROM(nadd(X1'', X2'')) -> ACTIVATE(nadd(X1'', X2''))
ACTIVATE(nfrom(X)) -> FROM(X)
FROM(nfrom(X'')) -> ACTIVATE(nfrom(X''))
and(true, X) -> activate(X)
and(false, Y) -> false
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
add(0, X) -> activate(X)
add(s(X), Y) -> s(nadd(activate(X), activate(Y)))
add(X1, X2) -> nadd(X1, X2)
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(activate(Y), nfirst(activate(X), activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(activate(X), nfrom(ns(activate(X))))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nadd(X1, X2)) -> add(X1, X2)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(ns(X)) -> s(X)
activate(X) -> X
innermost
two new Dependency Pairs are created:
ACTIVATE(nfrom(X)) -> FROM(X)
ACTIVATE(nfrom(nadd(X1'''', X2''''))) -> FROM(nadd(X1'''', X2''''))
ACTIVATE(nfrom(nfrom(X''''))) -> FROM(nfrom(X''''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 5
↳Forward Instantiation Transformation
FROM(nfrom(X'')) -> ACTIVATE(nfrom(X''))
ACTIVATE(nfrom(nfrom(X''''))) -> FROM(nfrom(X''''))
ACTIVATE(nadd(0, nfrom(X''''))) -> ADD(0, nfrom(X''''))
ADD(0, nadd(X1'', X2'')) -> ACTIVATE(nadd(X1'', X2''))
ACTIVATE(nadd(0, nadd(X1'''', X2''''))) -> ADD(0, nadd(X1'''', X2''''))
FROM(nadd(X1'', X2'')) -> ACTIVATE(nadd(X1'', X2''))
ACTIVATE(nfrom(nadd(X1'''', X2''''))) -> FROM(nadd(X1'''', X2''''))
ADD(0, nfrom(X'')) -> ACTIVATE(nfrom(X''))
and(true, X) -> activate(X)
and(false, Y) -> false
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
add(0, X) -> activate(X)
add(s(X), Y) -> s(nadd(activate(X), activate(Y)))
add(X1, X2) -> nadd(X1, X2)
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(activate(Y), nfirst(activate(X), activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(activate(X), nfrom(ns(activate(X))))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nadd(X1, X2)) -> add(X1, X2)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(ns(X)) -> s(X)
activate(X) -> X
innermost
two new Dependency Pairs are created:
ADD(0, nadd(X1'', X2'')) -> ACTIVATE(nadd(X1'', X2''))
ADD(0, nadd(0, nadd(X1'''''', X2''''''))) -> ACTIVATE(nadd(0, nadd(X1'''''', X2'''''')))
ADD(0, nadd(0, nfrom(X''''''))) -> ACTIVATE(nadd(0, nfrom(X'''''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 6
↳Forward Instantiation Transformation
ACTIVATE(nfrom(nfrom(X''''))) -> FROM(nfrom(X''''))
ADD(0, nfrom(X'')) -> ACTIVATE(nfrom(X''))
ACTIVATE(nadd(0, nfrom(X''''))) -> ADD(0, nfrom(X''''))
ADD(0, nadd(0, nfrom(X''''''))) -> ACTIVATE(nadd(0, nfrom(X'''''')))
ADD(0, nadd(0, nadd(X1'''''', X2''''''))) -> ACTIVATE(nadd(0, nadd(X1'''''', X2'''''')))
ACTIVATE(nadd(0, nadd(X1'''', X2''''))) -> ADD(0, nadd(X1'''', X2''''))
FROM(nadd(X1'', X2'')) -> ACTIVATE(nadd(X1'', X2''))
ACTIVATE(nfrom(nadd(X1'''', X2''''))) -> FROM(nadd(X1'''', X2''''))
FROM(nfrom(X'')) -> ACTIVATE(nfrom(X''))
and(true, X) -> activate(X)
and(false, Y) -> false
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
add(0, X) -> activate(X)
add(s(X), Y) -> s(nadd(activate(X), activate(Y)))
add(X1, X2) -> nadd(X1, X2)
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(activate(Y), nfirst(activate(X), activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(activate(X), nfrom(ns(activate(X))))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nadd(X1, X2)) -> add(X1, X2)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(ns(X)) -> s(X)
activate(X) -> X
innermost
two new Dependency Pairs are created:
ADD(0, nfrom(X'')) -> ACTIVATE(nfrom(X''))
ADD(0, nfrom(nadd(X1'''''', X2''''''))) -> ACTIVATE(nfrom(nadd(X1'''''', X2'''''')))
ADD(0, nfrom(nfrom(X''''''))) -> ACTIVATE(nfrom(nfrom(X'''''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 7
↳Forward Instantiation Transformation
ADD(0, nfrom(nfrom(X''''''))) -> ACTIVATE(nfrom(nfrom(X'''''')))
ADD(0, nfrom(nadd(X1'''''', X2''''''))) -> ACTIVATE(nfrom(nadd(X1'''''', X2'''''')))
ACTIVATE(nadd(0, nfrom(X''''))) -> ADD(0, nfrom(X''''))
ADD(0, nadd(0, nfrom(X''''''))) -> ACTIVATE(nadd(0, nfrom(X'''''')))
ADD(0, nadd(0, nadd(X1'''''', X2''''''))) -> ACTIVATE(nadd(0, nadd(X1'''''', X2'''''')))
ACTIVATE(nadd(0, nadd(X1'''', X2''''))) -> ADD(0, nadd(X1'''', X2''''))
FROM(nadd(X1'', X2'')) -> ACTIVATE(nadd(X1'', X2''))
ACTIVATE(nfrom(nadd(X1'''', X2''''))) -> FROM(nadd(X1'''', X2''''))
FROM(nfrom(X'')) -> ACTIVATE(nfrom(X''))
ACTIVATE(nfrom(nfrom(X''''))) -> FROM(nfrom(X''''))
and(true, X) -> activate(X)
and(false, Y) -> false
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
add(0, X) -> activate(X)
add(s(X), Y) -> s(nadd(activate(X), activate(Y)))
add(X1, X2) -> nadd(X1, X2)
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(activate(Y), nfirst(activate(X), activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(activate(X), nfrom(ns(activate(X))))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nadd(X1, X2)) -> add(X1, X2)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(ns(X)) -> s(X)
activate(X) -> X
innermost
two new Dependency Pairs are created:
FROM(nadd(X1'', X2'')) -> ACTIVATE(nadd(X1'', X2''))
FROM(nadd(0, nadd(X1'''''', X2''''''))) -> ACTIVATE(nadd(0, nadd(X1'''''', X2'''''')))
FROM(nadd(0, nfrom(X''''''))) -> ACTIVATE(nadd(0, nfrom(X'''''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 8
↳Forward Instantiation Transformation
FROM(nadd(0, nfrom(X''''''))) -> ACTIVATE(nadd(0, nfrom(X'''''')))
ADD(0, nfrom(nadd(X1'''''', X2''''''))) -> ACTIVATE(nfrom(nadd(X1'''''', X2'''''')))
ACTIVATE(nadd(0, nfrom(X''''))) -> ADD(0, nfrom(X''''))
ADD(0, nadd(0, nfrom(X''''''))) -> ACTIVATE(nadd(0, nfrom(X'''''')))
ADD(0, nadd(0, nadd(X1'''''', X2''''''))) -> ACTIVATE(nadd(0, nadd(X1'''''', X2'''''')))
ACTIVATE(nadd(0, nadd(X1'''', X2''''))) -> ADD(0, nadd(X1'''', X2''''))
FROM(nadd(0, nadd(X1'''''', X2''''''))) -> ACTIVATE(nadd(0, nadd(X1'''''', X2'''''')))
ACTIVATE(nfrom(nadd(X1'''', X2''''))) -> FROM(nadd(X1'''', X2''''))
FROM(nfrom(X'')) -> ACTIVATE(nfrom(X''))
ACTIVATE(nfrom(nfrom(X''''))) -> FROM(nfrom(X''''))
ADD(0, nfrom(nfrom(X''''''))) -> ACTIVATE(nfrom(nfrom(X'''''')))
and(true, X) -> activate(X)
and(false, Y) -> false
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
add(0, X) -> activate(X)
add(s(X), Y) -> s(nadd(activate(X), activate(Y)))
add(X1, X2) -> nadd(X1, X2)
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(activate(Y), nfirst(activate(X), activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(activate(X), nfrom(ns(activate(X))))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nadd(X1, X2)) -> add(X1, X2)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(ns(X)) -> s(X)
activate(X) -> X
innermost
two new Dependency Pairs are created:
FROM(nfrom(X'')) -> ACTIVATE(nfrom(X''))
FROM(nfrom(nadd(X1'''''', X2''''''))) -> ACTIVATE(nfrom(nadd(X1'''''', X2'''''')))
FROM(nfrom(nfrom(X''''''))) -> ACTIVATE(nfrom(nfrom(X'''''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 9
↳Forward Instantiation Transformation
FROM(nfrom(nfrom(X''''''))) -> ACTIVATE(nfrom(nfrom(X'''''')))
FROM(nfrom(nadd(X1'''''', X2''''''))) -> ACTIVATE(nfrom(nadd(X1'''''', X2'''''')))
ACTIVATE(nfrom(nfrom(X''''))) -> FROM(nfrom(X''''))
ADD(0, nfrom(nfrom(X''''''))) -> ACTIVATE(nfrom(nfrom(X'''''')))
ADD(0, nadd(0, nfrom(X''''''))) -> ACTIVATE(nadd(0, nfrom(X'''''')))
ADD(0, nadd(0, nadd(X1'''''', X2''''''))) -> ACTIVATE(nadd(0, nadd(X1'''''', X2'''''')))
ACTIVATE(nadd(0, nadd(X1'''', X2''''))) -> ADD(0, nadd(X1'''', X2''''))
FROM(nadd(0, nadd(X1'''''', X2''''''))) -> ACTIVATE(nadd(0, nadd(X1'''''', X2'''''')))
ACTIVATE(nfrom(nadd(X1'''', X2''''))) -> FROM(nadd(X1'''', X2''''))
ADD(0, nfrom(nadd(X1'''''', X2''''''))) -> ACTIVATE(nfrom(nadd(X1'''''', X2'''''')))
ACTIVATE(nadd(0, nfrom(X''''))) -> ADD(0, nfrom(X''''))
FROM(nadd(0, nfrom(X''''''))) -> ACTIVATE(nadd(0, nfrom(X'''''')))
and(true, X) -> activate(X)
and(false, Y) -> false
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
add(0, X) -> activate(X)
add(s(X), Y) -> s(nadd(activate(X), activate(Y)))
add(X1, X2) -> nadd(X1, X2)
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(activate(Y), nfirst(activate(X), activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(activate(X), nfrom(ns(activate(X))))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nadd(X1, X2)) -> add(X1, X2)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(ns(X)) -> s(X)
activate(X) -> X
innermost
two new Dependency Pairs are created:
ACTIVATE(nadd(0, nadd(X1'''', X2''''))) -> ADD(0, nadd(X1'''', X2''''))
ACTIVATE(nadd(0, nadd(0, nadd(X1'''''''', X2'''''''')))) -> ADD(0, nadd(0, nadd(X1'''''''', X2'''''''')))
ACTIVATE(nadd(0, nadd(0, nfrom(X'''''''')))) -> ADD(0, nadd(0, nfrom(X'''''''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 10
↳Forward Instantiation Transformation
FROM(nadd(0, nfrom(X''''''))) -> ACTIVATE(nadd(0, nfrom(X'''''')))
ADD(0, nfrom(nfrom(X''''''))) -> ACTIVATE(nfrom(nfrom(X'''''')))
ADD(0, nfrom(nadd(X1'''''', X2''''''))) -> ACTIVATE(nfrom(nadd(X1'''''', X2'''''')))
ACTIVATE(nadd(0, nfrom(X''''))) -> ADD(0, nfrom(X''''))
ADD(0, nadd(0, nfrom(X''''''))) -> ACTIVATE(nadd(0, nfrom(X'''''')))
ACTIVATE(nadd(0, nadd(0, nfrom(X'''''''')))) -> ADD(0, nadd(0, nfrom(X'''''''')))
ADD(0, nadd(0, nadd(X1'''''', X2''''''))) -> ACTIVATE(nadd(0, nadd(X1'''''', X2'''''')))
ACTIVATE(nadd(0, nadd(0, nadd(X1'''''''', X2'''''''')))) -> ADD(0, nadd(0, nadd(X1'''''''', X2'''''''')))
FROM(nadd(0, nadd(X1'''''', X2''''''))) -> ACTIVATE(nadd(0, nadd(X1'''''', X2'''''')))
ACTIVATE(nfrom(nadd(X1'''', X2''''))) -> FROM(nadd(X1'''', X2''''))
FROM(nfrom(nadd(X1'''''', X2''''''))) -> ACTIVATE(nfrom(nadd(X1'''''', X2'''''')))
ACTIVATE(nfrom(nfrom(X''''))) -> FROM(nfrom(X''''))
FROM(nfrom(nfrom(X''''''))) -> ACTIVATE(nfrom(nfrom(X'''''')))
and(true, X) -> activate(X)
and(false, Y) -> false
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
add(0, X) -> activate(X)
add(s(X), Y) -> s(nadd(activate(X), activate(Y)))
add(X1, X2) -> nadd(X1, X2)
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(activate(Y), nfirst(activate(X), activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(activate(X), nfrom(ns(activate(X))))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nadd(X1, X2)) -> add(X1, X2)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(ns(X)) -> s(X)
activate(X) -> X
innermost
two new Dependency Pairs are created:
ACTIVATE(nadd(0, nfrom(X''''))) -> ADD(0, nfrom(X''''))
ACTIVATE(nadd(0, nfrom(nadd(X1'''''''', X2'''''''')))) -> ADD(0, nfrom(nadd(X1'''''''', X2'''''''')))
ACTIVATE(nadd(0, nfrom(nfrom(X'''''''')))) -> ADD(0, nfrom(nfrom(X'''''''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 11
↳Forward Instantiation Transformation
FROM(nfrom(nfrom(X''''''))) -> ACTIVATE(nfrom(nfrom(X'''''')))
FROM(nfrom(nadd(X1'''''', X2''''''))) -> ACTIVATE(nfrom(nadd(X1'''''', X2'''''')))
ACTIVATE(nfrom(nfrom(X''''))) -> FROM(nfrom(X''''))
ADD(0, nfrom(nfrom(X''''''))) -> ACTIVATE(nfrom(nfrom(X'''''')))
ACTIVATE(nadd(0, nfrom(nfrom(X'''''''')))) -> ADD(0, nfrom(nfrom(X'''''''')))
ADD(0, nadd(0, nfrom(X''''''))) -> ACTIVATE(nadd(0, nfrom(X'''''')))
ACTIVATE(nadd(0, nadd(0, nfrom(X'''''''')))) -> ADD(0, nadd(0, nfrom(X'''''''')))
ADD(0, nadd(0, nadd(X1'''''', X2''''''))) -> ACTIVATE(nadd(0, nadd(X1'''''', X2'''''')))
ACTIVATE(nadd(0, nadd(0, nadd(X1'''''''', X2'''''''')))) -> ADD(0, nadd(0, nadd(X1'''''''', X2'''''''')))
FROM(nadd(0, nadd(X1'''''', X2''''''))) -> ACTIVATE(nadd(0, nadd(X1'''''', X2'''''')))
ACTIVATE(nfrom(nadd(X1'''', X2''''))) -> FROM(nadd(X1'''', X2''''))
ADD(0, nfrom(nadd(X1'''''', X2''''''))) -> ACTIVATE(nfrom(nadd(X1'''''', X2'''''')))
ACTIVATE(nadd(0, nfrom(nadd(X1'''''''', X2'''''''')))) -> ADD(0, nfrom(nadd(X1'''''''', X2'''''''')))
FROM(nadd(0, nfrom(X''''''))) -> ACTIVATE(nadd(0, nfrom(X'''''')))
and(true, X) -> activate(X)
and(false, Y) -> false
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
add(0, X) -> activate(X)
add(s(X), Y) -> s(nadd(activate(X), activate(Y)))
add(X1, X2) -> nadd(X1, X2)
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(activate(Y), nfirst(activate(X), activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(activate(X), nfrom(ns(activate(X))))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nadd(X1, X2)) -> add(X1, X2)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(ns(X)) -> s(X)
activate(X) -> X
innermost
two new Dependency Pairs are created:
ACTIVATE(nfrom(nadd(X1'''', X2''''))) -> FROM(nadd(X1'''', X2''''))
ACTIVATE(nfrom(nadd(0, nadd(X1'''''''', X2'''''''')))) -> FROM(nadd(0, nadd(X1'''''''', X2'''''''')))
ACTIVATE(nfrom(nadd(0, nfrom(X'''''''')))) -> FROM(nadd(0, nfrom(X'''''''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 12
↳Forward Instantiation Transformation
ADD(0, nfrom(nfrom(X''''''))) -> ACTIVATE(nfrom(nfrom(X'''''')))
ACTIVATE(nadd(0, nfrom(nfrom(X'''''''')))) -> ADD(0, nfrom(nfrom(X'''''''')))
FROM(nadd(0, nfrom(X''''''))) -> ACTIVATE(nadd(0, nfrom(X'''''')))
ACTIVATE(nfrom(nadd(0, nfrom(X'''''''')))) -> FROM(nadd(0, nfrom(X'''''''')))
ADD(0, nfrom(nadd(X1'''''', X2''''''))) -> ACTIVATE(nfrom(nadd(X1'''''', X2'''''')))
ACTIVATE(nadd(0, nfrom(nadd(X1'''''''', X2'''''''')))) -> ADD(0, nfrom(nadd(X1'''''''', X2'''''''')))
ADD(0, nadd(0, nfrom(X''''''))) -> ACTIVATE(nadd(0, nfrom(X'''''')))
ACTIVATE(nadd(0, nadd(0, nfrom(X'''''''')))) -> ADD(0, nadd(0, nfrom(X'''''''')))
ADD(0, nadd(0, nadd(X1'''''', X2''''''))) -> ACTIVATE(nadd(0, nadd(X1'''''', X2'''''')))
ACTIVATE(nadd(0, nadd(0, nadd(X1'''''''', X2'''''''')))) -> ADD(0, nadd(0, nadd(X1'''''''', X2'''''''')))
FROM(nadd(0, nadd(X1'''''', X2''''''))) -> ACTIVATE(nadd(0, nadd(X1'''''', X2'''''')))
ACTIVATE(nfrom(nadd(0, nadd(X1'''''''', X2'''''''')))) -> FROM(nadd(0, nadd(X1'''''''', X2'''''''')))
FROM(nfrom(nadd(X1'''''', X2''''''))) -> ACTIVATE(nfrom(nadd(X1'''''', X2'''''')))
ACTIVATE(nfrom(nfrom(X''''))) -> FROM(nfrom(X''''))
FROM(nfrom(nfrom(X''''''))) -> ACTIVATE(nfrom(nfrom(X'''''')))
and(true, X) -> activate(X)
and(false, Y) -> false
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
add(0, X) -> activate(X)
add(s(X), Y) -> s(nadd(activate(X), activate(Y)))
add(X1, X2) -> nadd(X1, X2)
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(activate(Y), nfirst(activate(X), activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(activate(X), nfrom(ns(activate(X))))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nadd(X1, X2)) -> add(X1, X2)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(ns(X)) -> s(X)
activate(X) -> X
innermost
two new Dependency Pairs are created:
ACTIVATE(nfrom(nfrom(X''''))) -> FROM(nfrom(X''''))
ACTIVATE(nfrom(nfrom(nadd(X1'''''''', X2'''''''')))) -> FROM(nfrom(nadd(X1'''''''', X2'''''''')))
ACTIVATE(nfrom(nfrom(nfrom(X'''''''')))) -> FROM(nfrom(nfrom(X'''''''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 13
↳Polynomial Ordering
FROM(nfrom(nfrom(X''''''))) -> ACTIVATE(nfrom(nfrom(X'''''')))
ACTIVATE(nfrom(nfrom(nfrom(X'''''''')))) -> FROM(nfrom(nfrom(X'''''''')))
ACTIVATE(nadd(0, nfrom(nfrom(X'''''''')))) -> ADD(0, nfrom(nfrom(X'''''''')))
FROM(nadd(0, nfrom(X''''''))) -> ACTIVATE(nadd(0, nfrom(X'''''')))
ACTIVATE(nfrom(nadd(0, nfrom(X'''''''')))) -> FROM(nadd(0, nfrom(X'''''''')))
ADD(0, nfrom(nadd(X1'''''', X2''''''))) -> ACTIVATE(nfrom(nadd(X1'''''', X2'''''')))
ACTIVATE(nadd(0, nfrom(nadd(X1'''''''', X2'''''''')))) -> ADD(0, nfrom(nadd(X1'''''''', X2'''''''')))
ADD(0, nadd(0, nfrom(X''''''))) -> ACTIVATE(nadd(0, nfrom(X'''''')))
ACTIVATE(nadd(0, nadd(0, nfrom(X'''''''')))) -> ADD(0, nadd(0, nfrom(X'''''''')))
ADD(0, nadd(0, nadd(X1'''''', X2''''''))) -> ACTIVATE(nadd(0, nadd(X1'''''', X2'''''')))
ACTIVATE(nadd(0, nadd(0, nadd(X1'''''''', X2'''''''')))) -> ADD(0, nadd(0, nadd(X1'''''''', X2'''''''')))
FROM(nadd(0, nadd(X1'''''', X2''''''))) -> ACTIVATE(nadd(0, nadd(X1'''''', X2'''''')))
ACTIVATE(nfrom(nadd(0, nadd(X1'''''''', X2'''''''')))) -> FROM(nadd(0, nadd(X1'''''''', X2'''''''')))
FROM(nfrom(nadd(X1'''''', X2''''''))) -> ACTIVATE(nfrom(nadd(X1'''''', X2'''''')))
ACTIVATE(nfrom(nfrom(nadd(X1'''''''', X2'''''''')))) -> FROM(nfrom(nadd(X1'''''''', X2'''''''')))
ADD(0, nfrom(nfrom(X''''''))) -> ACTIVATE(nfrom(nfrom(X'''''')))
and(true, X) -> activate(X)
and(false, Y) -> false
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
add(0, X) -> activate(X)
add(s(X), Y) -> s(nadd(activate(X), activate(Y)))
add(X1, X2) -> nadd(X1, X2)
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(activate(Y), nfirst(activate(X), activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(activate(X), nfrom(ns(activate(X))))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nadd(X1, X2)) -> add(X1, X2)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(ns(X)) -> s(X)
activate(X) -> X
innermost
ACTIVATE(nfrom(nfrom(nfrom(X'''''''')))) -> FROM(nfrom(nfrom(X'''''''')))
ACTIVATE(nfrom(nadd(0, nfrom(X'''''''')))) -> FROM(nadd(0, nfrom(X'''''''')))
ACTIVATE(nfrom(nadd(0, nadd(X1'''''''', X2'''''''')))) -> FROM(nadd(0, nadd(X1'''''''', X2'''''''')))
ACTIVATE(nfrom(nfrom(nadd(X1'''''''', X2'''''''')))) -> FROM(nfrom(nadd(X1'''''''', X2'''''''')))
POL(FROM(x1)) = x1 POL(n__from(x1)) = 1 + x1 POL(0) = 0 POL(ACTIVATE(x1)) = x1 POL(n__add(x1, x2)) = x2 POL(ADD(x1, x2)) = x2
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 14
↳Dependency Graph
FROM(nfrom(nfrom(X''''''))) -> ACTIVATE(nfrom(nfrom(X'''''')))
ACTIVATE(nadd(0, nfrom(nfrom(X'''''''')))) -> ADD(0, nfrom(nfrom(X'''''''')))
FROM(nadd(0, nfrom(X''''''))) -> ACTIVATE(nadd(0, nfrom(X'''''')))
ADD(0, nfrom(nadd(X1'''''', X2''''''))) -> ACTIVATE(nfrom(nadd(X1'''''', X2'''''')))
ACTIVATE(nadd(0, nfrom(nadd(X1'''''''', X2'''''''')))) -> ADD(0, nfrom(nadd(X1'''''''', X2'''''''')))
ADD(0, nadd(0, nfrom(X''''''))) -> ACTIVATE(nadd(0, nfrom(X'''''')))
ACTIVATE(nadd(0, nadd(0, nfrom(X'''''''')))) -> ADD(0, nadd(0, nfrom(X'''''''')))
ADD(0, nadd(0, nadd(X1'''''', X2''''''))) -> ACTIVATE(nadd(0, nadd(X1'''''', X2'''''')))
ACTIVATE(nadd(0, nadd(0, nadd(X1'''''''', X2'''''''')))) -> ADD(0, nadd(0, nadd(X1'''''''', X2'''''''')))
FROM(nadd(0, nadd(X1'''''', X2''''''))) -> ACTIVATE(nadd(0, nadd(X1'''''', X2'''''')))
FROM(nfrom(nadd(X1'''''', X2''''''))) -> ACTIVATE(nfrom(nadd(X1'''''', X2'''''')))
ADD(0, nfrom(nfrom(X''''''))) -> ACTIVATE(nfrom(nfrom(X'''''')))
and(true, X) -> activate(X)
and(false, Y) -> false
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
add(0, X) -> activate(X)
add(s(X), Y) -> s(nadd(activate(X), activate(Y)))
add(X1, X2) -> nadd(X1, X2)
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(activate(Y), nfirst(activate(X), activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(activate(X), nfrom(ns(activate(X))))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nadd(X1, X2)) -> add(X1, X2)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(ns(X)) -> s(X)
activate(X) -> X
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 15
↳Polynomial Ordering
ACTIVATE(nadd(0, nadd(0, nadd(X1'''''''', X2'''''''')))) -> ADD(0, nadd(0, nadd(X1'''''''', X2'''''''')))
ADD(0, nadd(0, nadd(X1'''''', X2''''''))) -> ACTIVATE(nadd(0, nadd(X1'''''', X2'''''')))
and(true, X) -> activate(X)
and(false, Y) -> false
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
add(0, X) -> activate(X)
add(s(X), Y) -> s(nadd(activate(X), activate(Y)))
add(X1, X2) -> nadd(X1, X2)
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(activate(Y), nfirst(activate(X), activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(activate(X), nfrom(ns(activate(X))))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nadd(X1, X2)) -> add(X1, X2)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(ns(X)) -> s(X)
activate(X) -> X
innermost
ACTIVATE(nadd(0, nadd(0, nadd(X1'''''''', X2'''''''')))) -> ADD(0, nadd(0, nadd(X1'''''''', X2'''''''')))
POL(0) = 1 POL(ACTIVATE(x1)) = x1 POL(n__add(x1, x2)) = x1 + x2 POL(ADD(x1, x2)) = x2
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 16
↳Dependency Graph
ADD(0, nadd(0, nadd(X1'''''', X2''''''))) -> ACTIVATE(nadd(0, nadd(X1'''''', X2'''''')))
and(true, X) -> activate(X)
and(false, Y) -> false
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
add(0, X) -> activate(X)
add(s(X), Y) -> s(nadd(activate(X), activate(Y)))
add(X1, X2) -> nadd(X1, X2)
first(0, X) -> nil
first(s(X), cons(Y, Z)) -> cons(activate(Y), nfirst(activate(X), activate(Z)))
first(X1, X2) -> nfirst(X1, X2)
from(X) -> cons(activate(X), nfrom(ns(activate(X))))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nadd(X1, X2)) -> add(X1, X2)
activate(nfirst(X1, X2)) -> first(X1, X2)
activate(nfrom(X)) -> from(X)
activate(ns(X)) -> s(X)
activate(X) -> X
innermost