Term Rewriting System R:
[X, Y, Z, X1, X2, X3]
active(and(true, X)) -> mark(X)
active(and(false, Y)) -> mark(false)
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(and(X1, X2)) -> and(active(X1), X2)
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(add(X1, X2)) -> add(active(X1), X2)
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
and(mark(X1), X2) -> mark(and(X1, X2))
and(ok(X1), ok(X2)) -> ok(and(X1, X2))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
add(mark(X1), X2) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
proper(and(X1, X2)) -> and(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

ACTIVE(add(s(X), Y)) -> S(add(X, Y))
ACTIVE(add(s(X), Y)) -> ADD(X, Y)
ACTIVE(first(s(X), cons(Y, Z))) -> CONS(Y, first(X, Z))
ACTIVE(first(s(X), cons(Y, Z))) -> FIRST(X, Z)
ACTIVE(from(X)) -> CONS(X, from(s(X)))
ACTIVE(from(X)) -> FROM(s(X))
ACTIVE(from(X)) -> S(X)
ACTIVE(and(X1, X2)) -> AND(active(X1), X2)
ACTIVE(and(X1, X2)) -> ACTIVE(X1)
ACTIVE(if(X1, X2, X3)) -> IF(active(X1), X2, X3)
ACTIVE(if(X1, X2, X3)) -> ACTIVE(X1)
ACTIVE(add(X1, X2)) -> ADD(active(X1), X2)
ACTIVE(add(X1, X2)) -> ACTIVE(X1)
ACTIVE(first(X1, X2)) -> FIRST(active(X1), X2)
ACTIVE(first(X1, X2)) -> ACTIVE(X1)
ACTIVE(first(X1, X2)) -> FIRST(X1, active(X2))
ACTIVE(first(X1, X2)) -> ACTIVE(X2)
AND(mark(X1), X2) -> AND(X1, X2)
AND(ok(X1), ok(X2)) -> AND(X1, X2)
IF(mark(X1), X2, X3) -> IF(X1, X2, X3)
IF(ok(X1), ok(X2), ok(X3)) -> IF(X1, X2, X3)
ADD(mark(X1), X2) -> ADD(X1, X2)
ADD(ok(X1), ok(X2)) -> ADD(X1, X2)
FIRST(mark(X1), X2) -> FIRST(X1, X2)
FIRST(X1, mark(X2)) -> FIRST(X1, X2)
FIRST(ok(X1), ok(X2)) -> FIRST(X1, X2)
PROPER(and(X1, X2)) -> AND(proper(X1), proper(X2))
PROPER(and(X1, X2)) -> PROPER(X1)
PROPER(and(X1, X2)) -> PROPER(X2)
PROPER(if(X1, X2, X3)) -> IF(proper(X1), proper(X2), proper(X3))
PROPER(if(X1, X2, X3)) -> PROPER(X1)
PROPER(if(X1, X2, X3)) -> PROPER(X2)
PROPER(if(X1, X2, X3)) -> PROPER(X3)
PROPER(add(X1, X2)) -> ADD(proper(X1), proper(X2))
PROPER(add(X1, X2)) -> PROPER(X1)
PROPER(add(X1, X2)) -> PROPER(X2)
PROPER(s(X)) -> S(proper(X))
PROPER(s(X)) -> PROPER(X)
PROPER(first(X1, X2)) -> FIRST(proper(X1), proper(X2))
PROPER(first(X1, X2)) -> PROPER(X1)
PROPER(first(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(from(X)) -> FROM(proper(X))
PROPER(from(X)) -> PROPER(X)
S(ok(X)) -> S(X)
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
FROM(ok(X)) -> FROM(X)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)

Furthermore, R contains 10 SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
AFS
       →DP Problem 10
Remaining


Dependency Pair:

S(ok(X)) -> S(X)


Rules:


active(and(true, X)) -> mark(X)
active(and(false, Y)) -> mark(false)
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(and(X1, X2)) -> and(active(X1), X2)
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(add(X1, X2)) -> add(active(X1), X2)
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
and(mark(X1), X2) -> mark(and(X1, X2))
and(ok(X1), ok(X2)) -> ok(and(X1, X2))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
add(mark(X1), X2) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
proper(and(X1, X2)) -> and(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

S(ok(X)) -> S(X)


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
S(x1) -> S(x1)
ok(x1) -> ok(x1)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 11
Dependency Graph
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
AFS
       →DP Problem 10
Remaining


Dependency Pair:


Rules:


active(and(true, X)) -> mark(X)
active(and(false, Y)) -> mark(false)
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(and(X1, X2)) -> and(active(X1), X2)
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(add(X1, X2)) -> add(active(X1), X2)
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
and(mark(X1), X2) -> mark(and(X1, X2))
and(ok(X1), ok(X2)) -> ok(and(X1, X2))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
add(mark(X1), X2) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
proper(and(X1, X2)) -> and(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Argument Filtering and Ordering
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
AFS
       →DP Problem 10
Remaining


Dependency Pairs:

ADD(ok(X1), ok(X2)) -> ADD(X1, X2)
ADD(mark(X1), X2) -> ADD(X1, X2)


Rules:


active(and(true, X)) -> mark(X)
active(and(false, Y)) -> mark(false)
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(and(X1, X2)) -> and(active(X1), X2)
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(add(X1, X2)) -> add(active(X1), X2)
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
and(mark(X1), X2) -> mark(and(X1, X2))
and(ok(X1), ok(X2)) -> ok(and(X1, X2))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
add(mark(X1), X2) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
proper(and(X1, X2)) -> and(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

ADD(ok(X1), ok(X2)) -> ADD(X1, X2)
ADD(mark(X1), X2) -> ADD(X1, X2)


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
ADD(x1, x2) -> ADD(x1, x2)
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 12
Dependency Graph
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
AFS
       →DP Problem 10
Remaining


Dependency Pair:


Rules:


active(and(true, X)) -> mark(X)
active(and(false, Y)) -> mark(false)
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(and(X1, X2)) -> and(active(X1), X2)
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(add(X1, X2)) -> add(active(X1), X2)
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
and(mark(X1), X2) -> mark(and(X1, X2))
and(ok(X1), ok(X2)) -> ok(and(X1, X2))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
add(mark(X1), X2) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
proper(and(X1, X2)) -> and(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Argument Filtering and Ordering
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
AFS
       →DP Problem 10
Remaining


Dependency Pair:

CONS(ok(X1), ok(X2)) -> CONS(X1, X2)


Rules:


active(and(true, X)) -> mark(X)
active(and(false, Y)) -> mark(false)
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(and(X1, X2)) -> and(active(X1), X2)
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(add(X1, X2)) -> add(active(X1), X2)
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
and(mark(X1), X2) -> mark(and(X1, X2))
and(ok(X1), ok(X2)) -> ok(and(X1, X2))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
add(mark(X1), X2) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
proper(and(X1, X2)) -> and(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

CONS(ok(X1), ok(X2)) -> CONS(X1, X2)


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
CONS(x1, x2) -> CONS(x1, x2)
ok(x1) -> ok(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
           →DP Problem 13
Dependency Graph
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
AFS
       →DP Problem 10
Remaining


Dependency Pair:


Rules:


active(and(true, X)) -> mark(X)
active(and(false, Y)) -> mark(false)
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(and(X1, X2)) -> and(active(X1), X2)
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(add(X1, X2)) -> add(active(X1), X2)
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
and(mark(X1), X2) -> mark(and(X1, X2))
and(ok(X1), ok(X2)) -> ok(and(X1, X2))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
add(mark(X1), X2) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
proper(and(X1, X2)) -> and(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
Argument Filtering and Ordering
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
AFS
       →DP Problem 10
Remaining


Dependency Pairs:

FIRST(ok(X1), ok(X2)) -> FIRST(X1, X2)
FIRST(X1, mark(X2)) -> FIRST(X1, X2)
FIRST(mark(X1), X2) -> FIRST(X1, X2)


Rules:


active(and(true, X)) -> mark(X)
active(and(false, Y)) -> mark(false)
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(and(X1, X2)) -> and(active(X1), X2)
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(add(X1, X2)) -> add(active(X1), X2)
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
and(mark(X1), X2) -> mark(and(X1, X2))
and(ok(X1), ok(X2)) -> ok(and(X1, X2))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
add(mark(X1), X2) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
proper(and(X1, X2)) -> and(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

FIRST(ok(X1), ok(X2)) -> FIRST(X1, X2)
FIRST(X1, mark(X2)) -> FIRST(X1, X2)
FIRST(mark(X1), X2) -> FIRST(X1, X2)


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
FIRST(x1, x2) -> FIRST(x1, x2)
ok(x1) -> ok(x1)
mark(x1) -> mark(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
           →DP Problem 14
Dependency Graph
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
AFS
       →DP Problem 10
Remaining


Dependency Pair:


Rules:


active(and(true, X)) -> mark(X)
active(and(false, Y)) -> mark(false)
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(and(X1, X2)) -> and(active(X1), X2)
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(add(X1, X2)) -> add(active(X1), X2)
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
and(mark(X1), X2) -> mark(and(X1, X2))
and(ok(X1), ok(X2)) -> ok(and(X1, X2))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
add(mark(X1), X2) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
proper(and(X1, X2)) -> and(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
Argument Filtering and Ordering
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
AFS
       →DP Problem 10
Remaining


Dependency Pair:

FROM(ok(X)) -> FROM(X)


Rules:


active(and(true, X)) -> mark(X)
active(and(false, Y)) -> mark(false)
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(and(X1, X2)) -> and(active(X1), X2)
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(add(X1, X2)) -> add(active(X1), X2)
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
and(mark(X1), X2) -> mark(and(X1, X2))
and(ok(X1), ok(X2)) -> ok(and(X1, X2))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
add(mark(X1), X2) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
proper(and(X1, X2)) -> and(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pair can be strictly oriented:

FROM(ok(X)) -> FROM(X)


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
FROM(x1) -> FROM(x1)
ok(x1) -> ok(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
           →DP Problem 15
Dependency Graph
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
AFS
       →DP Problem 10
Remaining


Dependency Pair:


Rules:


active(and(true, X)) -> mark(X)
active(and(false, Y)) -> mark(false)
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(and(X1, X2)) -> and(active(X1), X2)
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(add(X1, X2)) -> add(active(X1), X2)
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
and(mark(X1), X2) -> mark(and(X1, X2))
and(ok(X1), ok(X2)) -> ok(and(X1, X2))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
add(mark(X1), X2) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
proper(and(X1, X2)) -> and(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
Argument Filtering and Ordering
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
AFS
       →DP Problem 10
Remaining


Dependency Pairs:

AND(ok(X1), ok(X2)) -> AND(X1, X2)
AND(mark(X1), X2) -> AND(X1, X2)


Rules:


active(and(true, X)) -> mark(X)
active(and(false, Y)) -> mark(false)
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(and(X1, X2)) -> and(active(X1), X2)
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(add(X1, X2)) -> add(active(X1), X2)
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
and(mark(X1), X2) -> mark(and(X1, X2))
and(ok(X1), ok(X2)) -> ok(and(X1, X2))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
add(mark(X1), X2) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
proper(and(X1, X2)) -> and(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

AND(ok(X1), ok(X2)) -> AND(X1, X2)
AND(mark(X1), X2) -> AND(X1, X2)


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
AND(x1, x2) -> AND(x1, x2)
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
           →DP Problem 16
Dependency Graph
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
AFS
       →DP Problem 10
Remaining


Dependency Pair:


Rules:


active(and(true, X)) -> mark(X)
active(and(false, Y)) -> mark(false)
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(and(X1, X2)) -> and(active(X1), X2)
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(add(X1, X2)) -> add(active(X1), X2)
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
and(mark(X1), X2) -> mark(and(X1, X2))
and(ok(X1), ok(X2)) -> ok(and(X1, X2))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
add(mark(X1), X2) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
proper(and(X1, X2)) -> and(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
Argument Filtering and Ordering
       →DP Problem 8
AFS
       →DP Problem 9
AFS
       →DP Problem 10
Remaining


Dependency Pairs:

IF(ok(X1), ok(X2), ok(X3)) -> IF(X1, X2, X3)
IF(mark(X1), X2, X3) -> IF(X1, X2, X3)


Rules:


active(and(true, X)) -> mark(X)
active(and(false, Y)) -> mark(false)
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(and(X1, X2)) -> and(active(X1), X2)
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(add(X1, X2)) -> add(active(X1), X2)
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
and(mark(X1), X2) -> mark(and(X1, X2))
and(ok(X1), ok(X2)) -> ok(and(X1, X2))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
add(mark(X1), X2) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
proper(and(X1, X2)) -> and(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

IF(ok(X1), ok(X2), ok(X3)) -> IF(X1, X2, X3)
IF(mark(X1), X2, X3) -> IF(X1, X2, X3)


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
IF(x1, x2, x3) -> IF(x1, x2, x3)
ok(x1) -> ok(x1)
mark(x1) -> mark(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
           →DP Problem 17
Dependency Graph
       →DP Problem 8
AFS
       →DP Problem 9
AFS
       →DP Problem 10
Remaining


Dependency Pair:


Rules:


active(and(true, X)) -> mark(X)
active(and(false, Y)) -> mark(false)
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(and(X1, X2)) -> and(active(X1), X2)
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(add(X1, X2)) -> add(active(X1), X2)
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
and(mark(X1), X2) -> mark(and(X1, X2))
and(ok(X1), ok(X2)) -> ok(and(X1, X2))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
add(mark(X1), X2) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
proper(and(X1, X2)) -> and(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
Argument Filtering and Ordering
       →DP Problem 9
AFS
       →DP Problem 10
Remaining


Dependency Pairs:

ACTIVE(first(X1, X2)) -> ACTIVE(X2)
ACTIVE(first(X1, X2)) -> ACTIVE(X1)
ACTIVE(add(X1, X2)) -> ACTIVE(X1)
ACTIVE(if(X1, X2, X3)) -> ACTIVE(X1)
ACTIVE(and(X1, X2)) -> ACTIVE(X1)


Rules:


active(and(true, X)) -> mark(X)
active(and(false, Y)) -> mark(false)
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(and(X1, X2)) -> and(active(X1), X2)
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(add(X1, X2)) -> add(active(X1), X2)
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
and(mark(X1), X2) -> mark(and(X1, X2))
and(ok(X1), ok(X2)) -> ok(and(X1, X2))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
add(mark(X1), X2) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
proper(and(X1, X2)) -> and(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

ACTIVE(first(X1, X2)) -> ACTIVE(X2)
ACTIVE(first(X1, X2)) -> ACTIVE(X1)
ACTIVE(add(X1, X2)) -> ACTIVE(X1)
ACTIVE(if(X1, X2, X3)) -> ACTIVE(X1)
ACTIVE(and(X1, X2)) -> ACTIVE(X1)


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
ACTIVE(x1) -> ACTIVE(x1)
and(x1, x2) -> and(x1, x2)
add(x1, x2) -> add(x1, x2)
first(x1, x2) -> first(x1, x2)
if(x1, x2, x3) -> if(x1, x2, x3)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
           →DP Problem 18
Dependency Graph
       →DP Problem 9
AFS
       →DP Problem 10
Remaining


Dependency Pair:


Rules:


active(and(true, X)) -> mark(X)
active(and(false, Y)) -> mark(false)
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(and(X1, X2)) -> and(active(X1), X2)
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(add(X1, X2)) -> add(active(X1), X2)
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
and(mark(X1), X2) -> mark(and(X1, X2))
and(ok(X1), ok(X2)) -> ok(and(X1, X2))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
add(mark(X1), X2) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
proper(and(X1, X2)) -> and(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
Argument Filtering and Ordering
       →DP Problem 10
Remaining


Dependency Pairs:

PROPER(from(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(first(X1, X2)) -> PROPER(X2)
PROPER(first(X1, X2)) -> PROPER(X1)
PROPER(s(X)) -> PROPER(X)
PROPER(add(X1, X2)) -> PROPER(X2)
PROPER(add(X1, X2)) -> PROPER(X1)
PROPER(if(X1, X2, X3)) -> PROPER(X3)
PROPER(if(X1, X2, X3)) -> PROPER(X2)
PROPER(if(X1, X2, X3)) -> PROPER(X1)
PROPER(and(X1, X2)) -> PROPER(X2)
PROPER(and(X1, X2)) -> PROPER(X1)


Rules:


active(and(true, X)) -> mark(X)
active(and(false, Y)) -> mark(false)
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(and(X1, X2)) -> and(active(X1), X2)
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(add(X1, X2)) -> add(active(X1), X2)
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
and(mark(X1), X2) -> mark(and(X1, X2))
and(ok(X1), ok(X2)) -> ok(and(X1, X2))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
add(mark(X1), X2) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
proper(and(X1, X2)) -> and(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

PROPER(from(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(first(X1, X2)) -> PROPER(X2)
PROPER(first(X1, X2)) -> PROPER(X1)
PROPER(s(X)) -> PROPER(X)
PROPER(add(X1, X2)) -> PROPER(X2)
PROPER(add(X1, X2)) -> PROPER(X1)
PROPER(if(X1, X2, X3)) -> PROPER(X3)
PROPER(if(X1, X2, X3)) -> PROPER(X2)
PROPER(if(X1, X2, X3)) -> PROPER(X1)
PROPER(and(X1, X2)) -> PROPER(X2)
PROPER(and(X1, X2)) -> PROPER(X1)


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
PROPER(x1) -> PROPER(x1)
cons(x1, x2) -> cons(x1, x2)
first(x1, x2) -> first(x1, x2)
from(x1) -> from(x1)
s(x1) -> s(x1)
and(x1, x2) -> and(x1, x2)
add(x1, x2) -> add(x1, x2)
if(x1, x2, x3) -> if(x1, x2, x3)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
AFS
           →DP Problem 19
Dependency Graph
       →DP Problem 10
Remaining


Dependency Pair:


Rules:


active(and(true, X)) -> mark(X)
active(and(false, Y)) -> mark(false)
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(and(X1, X2)) -> and(active(X1), X2)
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(add(X1, X2)) -> add(active(X1), X2)
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
and(mark(X1), X2) -> mark(and(X1, X2))
and(ok(X1), ok(X2)) -> ok(and(X1, X2))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
add(mark(X1), X2) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
proper(and(X1, X2)) -> and(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
AFS
       →DP Problem 7
AFS
       →DP Problem 8
AFS
       →DP Problem 9
AFS
       →DP Problem 10
Remaining Obligation(s)




The following remains to be proven:
Dependency Pairs:

TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))


Rules:


active(and(true, X)) -> mark(X)
active(and(false, Y)) -> mark(false)
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(add(0, X)) -> mark(X)
active(add(s(X), Y)) -> mark(s(add(X, Y)))
active(first(0, X)) -> mark(nil)
active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(and(X1, X2)) -> and(active(X1), X2)
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(add(X1, X2)) -> add(active(X1), X2)
active(first(X1, X2)) -> first(active(X1), X2)
active(first(X1, X2)) -> first(X1, active(X2))
and(mark(X1), X2) -> mark(and(X1, X2))
and(ok(X1), ok(X2)) -> ok(and(X1, X2))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
add(mark(X1), X2) -> mark(add(X1, X2))
add(ok(X1), ok(X2)) -> ok(add(X1, X2))
first(mark(X1), X2) -> mark(first(X1, X2))
first(X1, mark(X2)) -> mark(first(X1, X2))
first(ok(X1), ok(X2)) -> ok(first(X1, X2))
proper(and(X1, X2)) -> and(proper(X1), proper(X2))
proper(true) -> ok(true)
proper(false) -> ok(false)
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(add(X1, X2)) -> add(proper(X1), proper(X2))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(first(X1, X2)) -> first(proper(X1), proper(X2))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))


Strategy:

innermost



Innermost Termination of R could not be shown.
Duration:
0:24 minutes