R
↳Dependency Pair Analysis
FROM(X) -> CONS(X, nfrom(s(X)))
LENGTH(ncons(X, Y)) -> LENGTH1(activate(Y))
LENGTH(ncons(X, Y)) -> ACTIVATE(Y)
LENGTH1(X) -> LENGTH(activate(X))
LENGTH1(X) -> ACTIVATE(X)
ACTIVATE(nfrom(X)) -> FROM(X)
ACTIVATE(nnil) -> NIL
ACTIVATE(ncons(X1, X2)) -> CONS(X1, X2)
R
↳DPs
→DP Problem 1
↳Narrowing Transformation
LENGTH1(X) -> LENGTH(activate(X))
LENGTH(ncons(X, Y)) -> LENGTH1(activate(Y))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
length(nnil) -> 0
length(ncons(X, Y)) -> s(length1(activate(Y)))
length1(X) -> length(activate(X))
nil -> nnil
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nnil) -> nil
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(X) -> X
innermost
four new Dependency Pairs are created:
LENGTH(ncons(X, Y)) -> LENGTH1(activate(Y))
LENGTH(ncons(X, nfrom(X''))) -> LENGTH1(from(X''))
LENGTH(ncons(X, nnil)) -> LENGTH1(nil)
LENGTH(ncons(X, ncons(X1', X2'))) -> LENGTH1(cons(X1', X2'))
LENGTH(ncons(X, Y')) -> LENGTH1(Y')
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Rewriting Transformation
LENGTH(ncons(X, Y')) -> LENGTH1(Y')
LENGTH(ncons(X, ncons(X1', X2'))) -> LENGTH1(cons(X1', X2'))
LENGTH(ncons(X, nnil)) -> LENGTH1(nil)
LENGTH(ncons(X, nfrom(X''))) -> LENGTH1(from(X''))
LENGTH1(X) -> LENGTH(activate(X))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
length(nnil) -> 0
length(ncons(X, Y)) -> s(length1(activate(Y)))
length1(X) -> length(activate(X))
nil -> nnil
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nnil) -> nil
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(X) -> X
innermost
one new Dependency Pair is created:
LENGTH(ncons(X, nnil)) -> LENGTH1(nil)
LENGTH(ncons(X, nnil)) -> LENGTH1(nnil)
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Rw
...
→DP Problem 3
↳Rewriting Transformation
LENGTH(ncons(X, nnil)) -> LENGTH1(nnil)
LENGTH(ncons(X, ncons(X1', X2'))) -> LENGTH1(cons(X1', X2'))
LENGTH(ncons(X, nfrom(X''))) -> LENGTH1(from(X''))
LENGTH1(X) -> LENGTH(activate(X))
LENGTH(ncons(X, Y')) -> LENGTH1(Y')
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
length(nnil) -> 0
length(ncons(X, Y)) -> s(length1(activate(Y)))
length1(X) -> length(activate(X))
nil -> nnil
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nnil) -> nil
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(X) -> X
innermost
one new Dependency Pair is created:
LENGTH(ncons(X, ncons(X1', X2'))) -> LENGTH1(cons(X1', X2'))
LENGTH(ncons(X, ncons(X1', X2'))) -> LENGTH1(ncons(X1', X2'))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Rw
...
→DP Problem 4
↳Narrowing Transformation
LENGTH(ncons(X, ncons(X1', X2'))) -> LENGTH1(ncons(X1', X2'))
LENGTH(ncons(X, Y')) -> LENGTH1(Y')
LENGTH(ncons(X, nfrom(X''))) -> LENGTH1(from(X''))
LENGTH1(X) -> LENGTH(activate(X))
LENGTH(ncons(X, nnil)) -> LENGTH1(nnil)
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
length(nnil) -> 0
length(ncons(X, Y)) -> s(length1(activate(Y)))
length1(X) -> length(activate(X))
nil -> nnil
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nnil) -> nil
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(X) -> X
innermost
four new Dependency Pairs are created:
LENGTH1(X) -> LENGTH(activate(X))
LENGTH1(nfrom(X'')) -> LENGTH(from(X''))
LENGTH1(nnil) -> LENGTH(nil)
LENGTH1(ncons(X1', X2')) -> LENGTH(cons(X1', X2'))
LENGTH1(X'') -> LENGTH(X'')
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Rw
...
→DP Problem 5
↳Rewriting Transformation
LENGTH1(X'') -> LENGTH(X'')
LENGTH(ncons(X, nnil)) -> LENGTH1(nnil)
LENGTH1(nnil) -> LENGTH(nil)
LENGTH(ncons(X, Y')) -> LENGTH1(Y')
LENGTH1(nfrom(X'')) -> LENGTH(from(X''))
LENGTH(ncons(X, nfrom(X''))) -> LENGTH1(from(X''))
LENGTH1(ncons(X1', X2')) -> LENGTH(cons(X1', X2'))
LENGTH(ncons(X, ncons(X1', X2'))) -> LENGTH1(ncons(X1', X2'))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
length(nnil) -> 0
length(ncons(X, Y)) -> s(length1(activate(Y)))
length1(X) -> length(activate(X))
nil -> nnil
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nnil) -> nil
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(X) -> X
innermost
one new Dependency Pair is created:
LENGTH1(nnil) -> LENGTH(nil)
LENGTH1(nnil) -> LENGTH(nnil)
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Rw
...
→DP Problem 6
↳Rewriting Transformation
LENGTH(ncons(X, ncons(X1', X2'))) -> LENGTH1(ncons(X1', X2'))
LENGTH(ncons(X, nnil)) -> LENGTH1(nnil)
LENGTH1(ncons(X1', X2')) -> LENGTH(cons(X1', X2'))
LENGTH(ncons(X, Y')) -> LENGTH1(Y')
LENGTH1(nfrom(X'')) -> LENGTH(from(X''))
LENGTH(ncons(X, nfrom(X''))) -> LENGTH1(from(X''))
LENGTH1(X'') -> LENGTH(X'')
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
length(nnil) -> 0
length(ncons(X, Y)) -> s(length1(activate(Y)))
length1(X) -> length(activate(X))
nil -> nnil
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nnil) -> nil
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(X) -> X
innermost
one new Dependency Pair is created:
LENGTH1(ncons(X1', X2')) -> LENGTH(cons(X1', X2'))
LENGTH1(ncons(X1', X2')) -> LENGTH(ncons(X1', X2'))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Rw
...
→DP Problem 7
↳Forward Instantiation Transformation
LENGTH(ncons(X, nnil)) -> LENGTH1(nnil)
LENGTH1(ncons(X1', X2')) -> LENGTH(ncons(X1', X2'))
LENGTH(ncons(X, Y')) -> LENGTH1(Y')
LENGTH1(nfrom(X'')) -> LENGTH(from(X''))
LENGTH(ncons(X, nfrom(X''))) -> LENGTH1(from(X''))
LENGTH1(X'') -> LENGTH(X'')
LENGTH(ncons(X, ncons(X1', X2'))) -> LENGTH1(ncons(X1', X2'))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
length(nnil) -> 0
length(ncons(X, Y)) -> s(length1(activate(Y)))
length1(X) -> length(activate(X))
nil -> nnil
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nnil) -> nil
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(X) -> X
innermost
four new Dependency Pairs are created:
LENGTH1(X'') -> LENGTH(X'')
LENGTH1(ncons(X'0, nfrom(X''''))) -> LENGTH(ncons(X'0, nfrom(X'''')))
LENGTH1(ncons(X''', Y''')) -> LENGTH(ncons(X''', Y'''))
LENGTH1(ncons(X''', nnil)) -> LENGTH(ncons(X''', nnil))
LENGTH1(ncons(X''', ncons(X1''', X2'''))) -> LENGTH(ncons(X''', ncons(X1''', X2''')))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Rw
...
→DP Problem 8
↳Forward Instantiation Transformation
LENGTH1(ncons(X''', ncons(X1''', X2'''))) -> LENGTH(ncons(X''', ncons(X1''', X2''')))
LENGTH1(ncons(X''', nnil)) -> LENGTH(ncons(X''', nnil))
LENGTH(ncons(X, ncons(X1', X2'))) -> LENGTH1(ncons(X1', X2'))
LENGTH1(ncons(X''', Y''')) -> LENGTH(ncons(X''', Y'''))
LENGTH1(ncons(X'0, nfrom(X''''))) -> LENGTH(ncons(X'0, nfrom(X'''')))
LENGTH(ncons(X, Y')) -> LENGTH1(Y')
LENGTH1(nfrom(X'')) -> LENGTH(from(X''))
LENGTH(ncons(X, nfrom(X''))) -> LENGTH1(from(X''))
LENGTH1(ncons(X1', X2')) -> LENGTH(ncons(X1', X2'))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
length(nnil) -> 0
length(ncons(X, Y)) -> s(length1(activate(Y)))
length1(X) -> length(activate(X))
nil -> nnil
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nnil) -> nil
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(X) -> X
innermost
six new Dependency Pairs are created:
LENGTH(ncons(X, Y')) -> LENGTH1(Y')
LENGTH(ncons(X, nfrom(X''''))) -> LENGTH1(nfrom(X''''))
LENGTH(ncons(X, ncons(X1''', X2'''))) -> LENGTH1(ncons(X1''', X2'''))
LENGTH(ncons(X, ncons(X'0'', nfrom(X'''''')))) -> LENGTH1(ncons(X'0'', nfrom(X'''''')))
LENGTH(ncons(X, ncons(X''''', Y'''''))) -> LENGTH1(ncons(X''''', Y'''''))
LENGTH(ncons(X, ncons(X''''', nnil))) -> LENGTH1(ncons(X''''', nnil))
LENGTH(ncons(X, ncons(X''''', ncons(X1''''', X2''''')))) -> LENGTH1(ncons(X''''', ncons(X1''''', X2''''')))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Rw
...
→DP Problem 9
↳Forward Instantiation Transformation
LENGTH(ncons(X, ncons(X''''', ncons(X1''''', X2''''')))) -> LENGTH1(ncons(X''''', ncons(X1''''', X2''''')))
LENGTH(ncons(X, ncons(X''''', nnil))) -> LENGTH1(ncons(X''''', nnil))
LENGTH(ncons(X, ncons(X''''', Y'''''))) -> LENGTH1(ncons(X''''', Y'''''))
LENGTH(ncons(X, ncons(X'0'', nfrom(X'''''')))) -> LENGTH1(ncons(X'0'', nfrom(X'''''')))
LENGTH1(ncons(X''', Y''')) -> LENGTH(ncons(X''', Y'''))
LENGTH1(ncons(X'0, nfrom(X''''))) -> LENGTH(ncons(X'0, nfrom(X'''')))
LENGTH(ncons(X, ncons(X1''', X2'''))) -> LENGTH1(ncons(X1''', X2'''))
LENGTH(ncons(X, nfrom(X''''))) -> LENGTH1(nfrom(X''''))
LENGTH1(nfrom(X'')) -> LENGTH(from(X''))
LENGTH(ncons(X, nfrom(X''))) -> LENGTH1(from(X''))
LENGTH1(ncons(X1', X2')) -> LENGTH(ncons(X1', X2'))
LENGTH(ncons(X, ncons(X1', X2'))) -> LENGTH1(ncons(X1', X2'))
LENGTH1(ncons(X''', ncons(X1''', X2'''))) -> LENGTH(ncons(X''', ncons(X1''', X2''')))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
length(nnil) -> 0
length(ncons(X, Y)) -> s(length1(activate(Y)))
length1(X) -> length(activate(X))
nil -> nnil
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nnil) -> nil
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(X) -> X
innermost
eight new Dependency Pairs are created:
LENGTH1(ncons(X1', X2')) -> LENGTH(ncons(X1', X2'))
LENGTH1(ncons(X1'', nfrom(X''''))) -> LENGTH(ncons(X1'', nfrom(X'''')))
LENGTH1(ncons(X1'0, ncons(X1''', X2'''))) -> LENGTH(ncons(X1'0, ncons(X1''', X2''')))
LENGTH1(ncons(X1'', nfrom(X''''''))) -> LENGTH(ncons(X1'', nfrom(X'''''')))
LENGTH1(ncons(X1'', ncons(X1''''', X2'''''))) -> LENGTH(ncons(X1'', ncons(X1''''', X2''''')))
LENGTH1(ncons(X1'', ncons(X'0'''', nfrom(X'''''''')))) -> LENGTH(ncons(X1'', ncons(X'0'''', nfrom(X''''''''))))
LENGTH1(ncons(X1'', ncons(X''''''', Y'''''''))) -> LENGTH(ncons(X1'', ncons(X''''''', Y''''''')))
LENGTH1(ncons(X1'', ncons(X''''''', nnil))) -> LENGTH(ncons(X1'', ncons(X''''''', nnil)))
LENGTH1(ncons(X1'', ncons(X''''''', ncons(X1''''''', X2''''''')))) -> LENGTH(ncons(X1'', ncons(X''''''', ncons(X1''''''', X2'''''''))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Rw
...
→DP Problem 10
↳Remaining Obligation(s)
LENGTH1(ncons(X1'', ncons(X''''''', ncons(X1''''''', X2''''''')))) -> LENGTH(ncons(X1'', ncons(X''''''', ncons(X1''''''', X2'''''''))))
LENGTH1(ncons(X1'', ncons(X''''''', nnil))) -> LENGTH(ncons(X1'', ncons(X''''''', nnil)))
LENGTH1(ncons(X1'', ncons(X''''''', Y'''''''))) -> LENGTH(ncons(X1'', ncons(X''''''', Y''''''')))
LENGTH1(ncons(X1'', ncons(X'0'''', nfrom(X'''''''')))) -> LENGTH(ncons(X1'', ncons(X'0'''', nfrom(X''''''''))))
LENGTH(ncons(X, ncons(X''''', nnil))) -> LENGTH1(ncons(X''''', nnil))
LENGTH1(ncons(X1'', ncons(X1''''', X2'''''))) -> LENGTH(ncons(X1'', ncons(X1''''', X2''''')))
LENGTH(ncons(X, ncons(X''''', Y'''''))) -> LENGTH1(ncons(X''''', Y'''''))
LENGTH1(ncons(X1'', nfrom(X''''''))) -> LENGTH(ncons(X1'', nfrom(X'''''')))
LENGTH(ncons(X, ncons(X'0'', nfrom(X'''''')))) -> LENGTH1(ncons(X'0'', nfrom(X'''''')))
LENGTH1(ncons(X1'0, ncons(X1''', X2'''))) -> LENGTH(ncons(X1'0, ncons(X1''', X2''')))
LENGTH1(ncons(X1'', nfrom(X''''))) -> LENGTH(ncons(X1'', nfrom(X'''')))
LENGTH(ncons(X, ncons(X1''', X2'''))) -> LENGTH1(ncons(X1''', X2'''))
LENGTH1(ncons(X''', ncons(X1''', X2'''))) -> LENGTH(ncons(X''', ncons(X1''', X2''')))
LENGTH(ncons(X, nfrom(X''''))) -> LENGTH1(nfrom(X''''))
LENGTH1(ncons(X'0, nfrom(X''''))) -> LENGTH(ncons(X'0, nfrom(X'''')))
LENGTH(ncons(X, ncons(X1', X2'))) -> LENGTH1(ncons(X1', X2'))
LENGTH1(nfrom(X'')) -> LENGTH(from(X''))
LENGTH(ncons(X, nfrom(X''))) -> LENGTH1(from(X''))
LENGTH1(ncons(X''', Y''')) -> LENGTH(ncons(X''', Y'''))
LENGTH(ncons(X, ncons(X''''', ncons(X1''''', X2''''')))) -> LENGTH1(ncons(X''''', ncons(X1''''', X2''''')))
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
length(nnil) -> 0
length(ncons(X, Y)) -> s(length1(activate(Y)))
length1(X) -> length(activate(X))
nil -> nnil
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nnil) -> nil
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(X) -> X
innermost