R
↳Dependency Pair Analysis
FROM(X) -> CONS(X, nfrom(ns(X)))
LENGTH(ncons(X, Y)) -> S(length1(activate(Y)))
LENGTH(ncons(X, Y)) -> LENGTH1(activate(Y))
LENGTH(ncons(X, Y)) -> ACTIVATE(Y)
LENGTH1(X) -> LENGTH(activate(X))
LENGTH1(X) -> ACTIVATE(X)
ACTIVATE(nfrom(X)) -> FROM(activate(X))
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
ACTIVATE(ns(X)) -> S(activate(X))
ACTIVATE(ns(X)) -> ACTIVATE(X)
ACTIVATE(nnil) -> NIL
ACTIVATE(ncons(X1, X2)) -> CONS(activate(X1), X2)
ACTIVATE(ncons(X1, X2)) -> ACTIVATE(X1)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Nar
ACTIVATE(ncons(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(ns(X)) -> ACTIVATE(X)
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
length(nnil) -> 0
length(ncons(X, Y)) -> s(length1(activate(Y)))
length1(X) -> length(activate(X))
s(X) -> ns(X)
nil -> nnil
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(nnil) -> nil
activate(ncons(X1, X2)) -> cons(activate(X1), X2)
activate(X) -> X
innermost
ACTIVATE(ncons(X1, X2)) -> ACTIVATE(X1)
POL(n__cons(x1, x2)) = 1 + x1 POL(n__from(x1)) = x1 POL(n__s(x1)) = x1 POL(ACTIVATE(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 3
↳Polynomial Ordering
→DP Problem 2
↳Nar
ACTIVATE(ns(X)) -> ACTIVATE(X)
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
length(nnil) -> 0
length(ncons(X, Y)) -> s(length1(activate(Y)))
length1(X) -> length(activate(X))
s(X) -> ns(X)
nil -> nnil
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(nnil) -> nil
activate(ncons(X1, X2)) -> cons(activate(X1), X2)
activate(X) -> X
innermost
ACTIVATE(ns(X)) -> ACTIVATE(X)
POL(n__from(x1)) = x1 POL(n__s(x1)) = 1 + x1 POL(ACTIVATE(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 3
↳Polo
...
→DP Problem 4
↳Polynomial Ordering
→DP Problem 2
↳Nar
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
length(nnil) -> 0
length(ncons(X, Y)) -> s(length1(activate(Y)))
length1(X) -> length(activate(X))
s(X) -> ns(X)
nil -> nnil
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(nnil) -> nil
activate(ncons(X1, X2)) -> cons(activate(X1), X2)
activate(X) -> X
innermost
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
POL(n__from(x1)) = 1 + x1 POL(ACTIVATE(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 3
↳Polo
...
→DP Problem 5
↳Dependency Graph
→DP Problem 2
↳Nar
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
length(nnil) -> 0
length(ncons(X, Y)) -> s(length1(activate(Y)))
length1(X) -> length(activate(X))
s(X) -> ns(X)
nil -> nnil
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(nnil) -> nil
activate(ncons(X1, X2)) -> cons(activate(X1), X2)
activate(X) -> X
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Narrowing Transformation
LENGTH1(X) -> LENGTH(activate(X))
LENGTH(ncons(X, Y)) -> LENGTH1(activate(Y))
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
length(nnil) -> 0
length(ncons(X, Y)) -> s(length1(activate(Y)))
length1(X) -> length(activate(X))
s(X) -> ns(X)
nil -> nnil
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(nnil) -> nil
activate(ncons(X1, X2)) -> cons(activate(X1), X2)
activate(X) -> X
innermost
five new Dependency Pairs are created:
LENGTH(ncons(X, Y)) -> LENGTH1(activate(Y))
LENGTH(ncons(X, nfrom(X''))) -> LENGTH1(from(activate(X'')))
LENGTH(ncons(X, ns(X''))) -> LENGTH1(s(activate(X'')))
LENGTH(ncons(X, nnil)) -> LENGTH1(nil)
LENGTH(ncons(X, ncons(X1', X2'))) -> LENGTH1(cons(activate(X1'), X2'))
LENGTH(ncons(X, Y')) -> LENGTH1(Y')
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Nar
→DP Problem 6
↳Rewriting Transformation
LENGTH(ncons(X, Y')) -> LENGTH1(Y')
LENGTH(ncons(X, ncons(X1', X2'))) -> LENGTH1(cons(activate(X1'), X2'))
LENGTH(ncons(X, nnil)) -> LENGTH1(nil)
LENGTH(ncons(X, ns(X''))) -> LENGTH1(s(activate(X'')))
LENGTH(ncons(X, nfrom(X''))) -> LENGTH1(from(activate(X'')))
LENGTH1(X) -> LENGTH(activate(X))
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
length(nnil) -> 0
length(ncons(X, Y)) -> s(length1(activate(Y)))
length1(X) -> length(activate(X))
s(X) -> ns(X)
nil -> nnil
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(nnil) -> nil
activate(ncons(X1, X2)) -> cons(activate(X1), X2)
activate(X) -> X
innermost
one new Dependency Pair is created:
LENGTH(ncons(X, nnil)) -> LENGTH1(nil)
LENGTH(ncons(X, nnil)) -> LENGTH1(nnil)
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Nar
→DP Problem 6
↳Rw
...
→DP Problem 7
↳Narrowing Transformation
LENGTH(ncons(X, nnil)) -> LENGTH1(nnil)
LENGTH(ncons(X, ncons(X1', X2'))) -> LENGTH1(cons(activate(X1'), X2'))
LENGTH(ncons(X, ns(X''))) -> LENGTH1(s(activate(X'')))
LENGTH(ncons(X, nfrom(X''))) -> LENGTH1(from(activate(X'')))
LENGTH1(X) -> LENGTH(activate(X))
LENGTH(ncons(X, Y')) -> LENGTH1(Y')
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
length(nnil) -> 0
length(ncons(X, Y)) -> s(length1(activate(Y)))
length1(X) -> length(activate(X))
s(X) -> ns(X)
nil -> nnil
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(nnil) -> nil
activate(ncons(X1, X2)) -> cons(activate(X1), X2)
activate(X) -> X
innermost
five new Dependency Pairs are created:
LENGTH1(X) -> LENGTH(activate(X))
LENGTH1(nfrom(X'')) -> LENGTH(from(activate(X'')))
LENGTH1(ns(X'')) -> LENGTH(s(activate(X'')))
LENGTH1(nnil) -> LENGTH(nil)
LENGTH1(ncons(X1', X2')) -> LENGTH(cons(activate(X1'), X2'))
LENGTH1(X'') -> LENGTH(X'')
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Nar
→DP Problem 6
↳Rw
...
→DP Problem 8
↳Rewriting Transformation
LENGTH1(X'') -> LENGTH(X'')
LENGTH(ncons(X, Y')) -> LENGTH1(Y')
LENGTH1(ncons(X1', X2')) -> LENGTH(cons(activate(X1'), X2'))
LENGTH(ncons(X, ncons(X1', X2'))) -> LENGTH1(cons(activate(X1'), X2'))
LENGTH1(ns(X'')) -> LENGTH(s(activate(X'')))
LENGTH(ncons(X, ns(X''))) -> LENGTH1(s(activate(X'')))
LENGTH1(nfrom(X'')) -> LENGTH(from(activate(X'')))
LENGTH(ncons(X, nfrom(X''))) -> LENGTH1(from(activate(X'')))
LENGTH1(nnil) -> LENGTH(nil)
LENGTH(ncons(X, nnil)) -> LENGTH1(nnil)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
length(nnil) -> 0
length(ncons(X, Y)) -> s(length1(activate(Y)))
length1(X) -> length(activate(X))
s(X) -> ns(X)
nil -> nnil
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(nnil) -> nil
activate(ncons(X1, X2)) -> cons(activate(X1), X2)
activate(X) -> X
innermost
one new Dependency Pair is created:
LENGTH1(nnil) -> LENGTH(nil)
LENGTH1(nnil) -> LENGTH(nnil)
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Nar
→DP Problem 6
↳Rw
...
→DP Problem 9
↳Forward Instantiation Transformation
LENGTH(ncons(X, nnil)) -> LENGTH1(nnil)
LENGTH(ncons(X, Y')) -> LENGTH1(Y')
LENGTH1(ncons(X1', X2')) -> LENGTH(cons(activate(X1'), X2'))
LENGTH(ncons(X, ncons(X1', X2'))) -> LENGTH1(cons(activate(X1'), X2'))
LENGTH1(ns(X'')) -> LENGTH(s(activate(X'')))
LENGTH(ncons(X, ns(X''))) -> LENGTH1(s(activate(X'')))
LENGTH1(nfrom(X'')) -> LENGTH(from(activate(X'')))
LENGTH(ncons(X, nfrom(X''))) -> LENGTH1(from(activate(X'')))
LENGTH1(X'') -> LENGTH(X'')
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
length(nnil) -> 0
length(ncons(X, Y)) -> s(length1(activate(Y)))
length1(X) -> length(activate(X))
s(X) -> ns(X)
nil -> nnil
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(nnil) -> nil
activate(ncons(X1, X2)) -> cons(activate(X1), X2)
activate(X) -> X
innermost
five new Dependency Pairs are created:
LENGTH1(X'') -> LENGTH(X'')
LENGTH1(ncons(X'0, nfrom(X''''))) -> LENGTH(ncons(X'0, nfrom(X'''')))
LENGTH1(ncons(X'0, ns(X''''))) -> LENGTH(ncons(X'0, ns(X'''')))
LENGTH1(ncons(X''', ncons(X1''', X2'''))) -> LENGTH(ncons(X''', ncons(X1''', X2''')))
LENGTH1(ncons(X''', Y''')) -> LENGTH(ncons(X''', Y'''))
LENGTH1(ncons(X''', nnil)) -> LENGTH(ncons(X''', nnil))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Nar
→DP Problem 6
↳Rw
...
→DP Problem 10
↳Forward Instantiation Transformation
LENGTH1(ncons(X''', nnil)) -> LENGTH(ncons(X''', nnil))
LENGTH1(ncons(X''', Y''')) -> LENGTH(ncons(X''', Y'''))
LENGTH1(ncons(X''', ncons(X1''', X2'''))) -> LENGTH(ncons(X''', ncons(X1''', X2''')))
LENGTH1(ncons(X'0, ns(X''''))) -> LENGTH(ncons(X'0, ns(X'''')))
LENGTH1(ncons(X'0, nfrom(X''''))) -> LENGTH(ncons(X'0, nfrom(X'''')))
LENGTH(ncons(X, ncons(X1', X2'))) -> LENGTH1(cons(activate(X1'), X2'))
LENGTH1(ncons(X1', X2')) -> LENGTH(cons(activate(X1'), X2'))
LENGTH(ncons(X, ns(X''))) -> LENGTH1(s(activate(X'')))
LENGTH1(ns(X'')) -> LENGTH(s(activate(X'')))
LENGTH(ncons(X, nfrom(X''))) -> LENGTH1(from(activate(X'')))
LENGTH1(nfrom(X'')) -> LENGTH(from(activate(X'')))
LENGTH(ncons(X, Y')) -> LENGTH1(Y')
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
length(nnil) -> 0
length(ncons(X, Y)) -> s(length1(activate(Y)))
length1(X) -> length(activate(X))
s(X) -> ns(X)
nil -> nnil
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(nnil) -> nil
activate(ncons(X1, X2)) -> cons(activate(X1), X2)
activate(X) -> X
innermost
eight new Dependency Pairs are created:
LENGTH(ncons(X, Y')) -> LENGTH1(Y')
LENGTH(ncons(X, nfrom(X''''))) -> LENGTH1(nfrom(X''''))
LENGTH(ncons(X, ns(X''''))) -> LENGTH1(ns(X''''))
LENGTH(ncons(X, ncons(X1''', X2'''))) -> LENGTH1(ncons(X1''', X2'''))
LENGTH(ncons(X, ncons(X'0'', nfrom(X'''''')))) -> LENGTH1(ncons(X'0'', nfrom(X'''''')))
LENGTH(ncons(X, ncons(X'0'', ns(X'''''')))) -> LENGTH1(ncons(X'0'', ns(X'''''')))
LENGTH(ncons(X, ncons(X''''', ncons(X1''''', X2''''')))) -> LENGTH1(ncons(X''''', ncons(X1''''', X2''''')))
LENGTH(ncons(X, ncons(X''''', Y'''''))) -> LENGTH1(ncons(X''''', Y'''''))
LENGTH(ncons(X, ncons(X''''', nnil))) -> LENGTH1(ncons(X''''', nnil))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Nar
→DP Problem 6
↳Rw
...
→DP Problem 11
↳Polynomial Ordering
LENGTH(ncons(X, ncons(X''''', nnil))) -> LENGTH1(ncons(X''''', nnil))
LENGTH(ncons(X, ncons(X''''', Y'''''))) -> LENGTH1(ncons(X''''', Y'''''))
LENGTH(ncons(X, ncons(X''''', ncons(X1''''', X2''''')))) -> LENGTH1(ncons(X''''', ncons(X1''''', X2''''')))
LENGTH(ncons(X, ncons(X'0'', ns(X'''''')))) -> LENGTH1(ncons(X'0'', ns(X'''''')))
LENGTH(ncons(X, ncons(X'0'', nfrom(X'''''')))) -> LENGTH1(ncons(X'0'', nfrom(X'''''')))
LENGTH1(ncons(X''', ncons(X1''', X2'''))) -> LENGTH(ncons(X''', ncons(X1''', X2''')))
LENGTH1(ncons(X'0, ns(X''''))) -> LENGTH(ncons(X'0, ns(X'''')))
LENGTH1(ncons(X'0, nfrom(X''''))) -> LENGTH(ncons(X'0, nfrom(X'''')))
LENGTH(ncons(X, ncons(X1''', X2'''))) -> LENGTH1(ncons(X1''', X2'''))
LENGTH(ncons(X, ns(X''''))) -> LENGTH1(ns(X''''))
LENGTH(ncons(X, nfrom(X''''))) -> LENGTH1(nfrom(X''''))
LENGTH1(ncons(X1', X2')) -> LENGTH(cons(activate(X1'), X2'))
LENGTH(ncons(X, ncons(X1', X2'))) -> LENGTH1(cons(activate(X1'), X2'))
LENGTH1(ns(X'')) -> LENGTH(s(activate(X'')))
LENGTH(ncons(X, ns(X''))) -> LENGTH1(s(activate(X'')))
LENGTH1(nfrom(X'')) -> LENGTH(from(activate(X'')))
LENGTH(ncons(X, nfrom(X''))) -> LENGTH1(from(activate(X'')))
LENGTH1(ncons(X''', Y''')) -> LENGTH(ncons(X''', Y'''))
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
length(nnil) -> 0
length(ncons(X, Y)) -> s(length1(activate(Y)))
length1(X) -> length(activate(X))
s(X) -> ns(X)
nil -> nnil
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(nnil) -> nil
activate(ncons(X1, X2)) -> cons(activate(X1), X2)
activate(X) -> X
innermost
LENGTH(ncons(X, ns(X''''))) -> LENGTH1(ns(X''''))
LENGTH(ncons(X, ns(X''))) -> LENGTH1(s(activate(X'')))
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(nnil) -> nil
activate(ncons(X1, X2)) -> cons(activate(X1), X2)
activate(X) -> X
s(X) -> ns(X)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
nil -> nnil
POL(n__cons(x1, x2)) = 1 POL(n__from(x1)) = 1 POL(from(x1)) = 1 POL(activate(x1)) = x1 POL(cons(x1, x2)) = 1 POL(LENGTH1(x1)) = x1 POL(n__s(x1)) = 0 POL(nil) = 0 POL(s(x1)) = 0 POL(n__nil) = 0 POL(LENGTH(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Nar
→DP Problem 6
↳Rw
...
→DP Problem 12
↳Dependency Graph
LENGTH(ncons(X, ncons(X''''', nnil))) -> LENGTH1(ncons(X''''', nnil))
LENGTH(ncons(X, ncons(X''''', Y'''''))) -> LENGTH1(ncons(X''''', Y'''''))
LENGTH(ncons(X, ncons(X''''', ncons(X1''''', X2''''')))) -> LENGTH1(ncons(X''''', ncons(X1''''', X2''''')))
LENGTH(ncons(X, ncons(X'0'', ns(X'''''')))) -> LENGTH1(ncons(X'0'', ns(X'''''')))
LENGTH(ncons(X, ncons(X'0'', nfrom(X'''''')))) -> LENGTH1(ncons(X'0'', nfrom(X'''''')))
LENGTH1(ncons(X''', ncons(X1''', X2'''))) -> LENGTH(ncons(X''', ncons(X1''', X2''')))
LENGTH1(ncons(X'0, ns(X''''))) -> LENGTH(ncons(X'0, ns(X'''')))
LENGTH1(ncons(X'0, nfrom(X''''))) -> LENGTH(ncons(X'0, nfrom(X'''')))
LENGTH(ncons(X, ncons(X1''', X2'''))) -> LENGTH1(ncons(X1''', X2'''))
LENGTH(ncons(X, nfrom(X''''))) -> LENGTH1(nfrom(X''''))
LENGTH1(ncons(X1', X2')) -> LENGTH(cons(activate(X1'), X2'))
LENGTH(ncons(X, ncons(X1', X2'))) -> LENGTH1(cons(activate(X1'), X2'))
LENGTH1(ns(X'')) -> LENGTH(s(activate(X'')))
LENGTH1(nfrom(X'')) -> LENGTH(from(activate(X'')))
LENGTH(ncons(X, nfrom(X''))) -> LENGTH1(from(activate(X'')))
LENGTH1(ncons(X''', Y''')) -> LENGTH(ncons(X''', Y'''))
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
length(nnil) -> 0
length(ncons(X, Y)) -> s(length1(activate(Y)))
length1(X) -> length(activate(X))
s(X) -> ns(X)
nil -> nnil
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(nnil) -> nil
activate(ncons(X1, X2)) -> cons(activate(X1), X2)
activate(X) -> X
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Nar
→DP Problem 6
↳Rw
...
→DP Problem 13
↳Polynomial Ordering
LENGTH(ncons(X, ncons(X''''', Y'''''))) -> LENGTH1(ncons(X''''', Y'''''))
LENGTH(ncons(X, ncons(X''''', ncons(X1''''', X2''''')))) -> LENGTH1(ncons(X''''', ncons(X1''''', X2''''')))
LENGTH(ncons(X, ncons(X'0'', ns(X'''''')))) -> LENGTH1(ncons(X'0'', ns(X'''''')))
LENGTH1(ncons(X''', Y''')) -> LENGTH(ncons(X''', Y'''))
LENGTH(ncons(X, ncons(X'0'', nfrom(X'''''')))) -> LENGTH1(ncons(X'0'', nfrom(X'''''')))
LENGTH1(ncons(X''', ncons(X1''', X2'''))) -> LENGTH(ncons(X''', ncons(X1''', X2''')))
LENGTH1(ncons(X'0, nfrom(X''''))) -> LENGTH(ncons(X'0, nfrom(X'''')))
LENGTH(ncons(X, ncons(X1''', X2'''))) -> LENGTH1(ncons(X1''', X2'''))
LENGTH(ncons(X, nfrom(X''''))) -> LENGTH1(nfrom(X''''))
LENGTH1(ns(X'')) -> LENGTH(s(activate(X'')))
LENGTH(ncons(X, ncons(X1', X2'))) -> LENGTH1(cons(activate(X1'), X2'))
LENGTH1(nfrom(X'')) -> LENGTH(from(activate(X'')))
LENGTH(ncons(X, nfrom(X''))) -> LENGTH1(from(activate(X'')))
LENGTH1(ncons(X1', X2')) -> LENGTH(cons(activate(X1'), X2'))
LENGTH(ncons(X, ncons(X''''', nnil))) -> LENGTH1(ncons(X''''', nnil))
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
length(nnil) -> 0
length(ncons(X, Y)) -> s(length1(activate(Y)))
length1(X) -> length(activate(X))
s(X) -> ns(X)
nil -> nnil
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(nnil) -> nil
activate(ncons(X1, X2)) -> cons(activate(X1), X2)
activate(X) -> X
innermost
LENGTH1(ns(X'')) -> LENGTH(s(activate(X'')))
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(nnil) -> nil
activate(ncons(X1, X2)) -> cons(activate(X1), X2)
activate(X) -> X
cons(X1, X2) -> ncons(X1, X2)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
nil -> nnil
POL(n__from(x1)) = 0 POL(from(x1)) = 0 POL(n__cons(x1, x2)) = 0 POL(activate(x1)) = x1 POL(cons(x1, x2)) = 0 POL(LENGTH1(x1)) = x1 POL(n__s(x1)) = 1 POL(nil) = 0 POL(s(x1)) = 1 POL(n__nil) = 0 POL(LENGTH(x1)) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Nar
→DP Problem 6
↳Rw
...
→DP Problem 14
↳Remaining Obligation(s)
LENGTH(ncons(X, ncons(X''''', Y'''''))) -> LENGTH1(ncons(X''''', Y'''''))
LENGTH(ncons(X, ncons(X''''', ncons(X1''''', X2''''')))) -> LENGTH1(ncons(X''''', ncons(X1''''', X2''''')))
LENGTH(ncons(X, ncons(X'0'', ns(X'''''')))) -> LENGTH1(ncons(X'0'', ns(X'''''')))
LENGTH1(ncons(X''', Y''')) -> LENGTH(ncons(X''', Y'''))
LENGTH(ncons(X, ncons(X'0'', nfrom(X'''''')))) -> LENGTH1(ncons(X'0'', nfrom(X'''''')))
LENGTH1(ncons(X''', ncons(X1''', X2'''))) -> LENGTH(ncons(X''', ncons(X1''', X2''')))
LENGTH1(ncons(X'0, nfrom(X''''))) -> LENGTH(ncons(X'0, nfrom(X'''')))
LENGTH(ncons(X, ncons(X1''', X2'''))) -> LENGTH1(ncons(X1''', X2'''))
LENGTH(ncons(X, nfrom(X''''))) -> LENGTH1(nfrom(X''''))
LENGTH(ncons(X, ncons(X1', X2'))) -> LENGTH1(cons(activate(X1'), X2'))
LENGTH1(nfrom(X'')) -> LENGTH(from(activate(X'')))
LENGTH(ncons(X, nfrom(X''))) -> LENGTH1(from(activate(X'')))
LENGTH1(ncons(X1', X2')) -> LENGTH(cons(activate(X1'), X2'))
LENGTH(ncons(X, ncons(X''''', nnil))) -> LENGTH1(ncons(X''''', nnil))
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
length(nnil) -> 0
length(ncons(X, Y)) -> s(length1(activate(Y)))
length1(X) -> length(activate(X))
s(X) -> ns(X)
nil -> nnil
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(nnil) -> nil
activate(ncons(X1, X2)) -> cons(activate(X1), X2)
activate(X) -> X
innermost