R
↳Dependency Pair Analysis
ACTIVE(from(X)) -> CONS(X, from(s(X)))
ACTIVE(from(X)) -> FROM(s(X))
ACTIVE(from(X)) -> S(X)
ACTIVE(length(cons(X, Y))) -> S(length1(Y))
ACTIVE(length(cons(X, Y))) -> LENGTH1(Y)
ACTIVE(length1(X)) -> LENGTH(X)
ACTIVE(from(X)) -> FROM(active(X))
ACTIVE(from(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(s(X)) -> S(active(X))
ACTIVE(s(X)) -> ACTIVE(X)
FROM(mark(X)) -> FROM(X)
FROM(ok(X)) -> FROM(X)
CONS(mark(X1), X2) -> CONS(X1, X2)
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
S(mark(X)) -> S(X)
S(ok(X)) -> S(X)
PROPER(from(X)) -> FROM(proper(X))
PROPER(from(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(s(X)) -> S(proper(X))
PROPER(s(X)) -> PROPER(X)
PROPER(length(X)) -> LENGTH(proper(X))
PROPER(length(X)) -> PROPER(X)
PROPER(length1(X)) -> LENGTH1(proper(X))
PROPER(length1(X)) -> PROPER(X)
LENGTH(ok(X)) -> LENGTH(X)
LENGTH1(ok(X)) -> LENGTH1(X)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)
R
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
S(mark(X)) -> S(X)
S(ok(X)) -> S(X)
active(from(X)) -> mark(cons(X, from(s(X))))
active(length(nil)) -> mark(0)
active(length(cons(X, Y))) -> mark(s(length1(Y)))
active(length1(X)) -> mark(length(X))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(length(X)) -> length(proper(X))
proper(nil) -> ok(nil)
proper(0) -> ok(0)
proper(length1(X)) -> length1(proper(X))
length(ok(X)) -> ok(length(X))
length1(ok(X)) -> ok(length1(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 9
↳Size-Change Principle
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
S(mark(X)) -> S(X)
S(ok(X)) -> S(X)
none
innermost
|
|
trivial
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Usable Rules (Innermost)
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
LENGTH1(ok(X)) -> LENGTH1(X)
active(from(X)) -> mark(cons(X, from(s(X))))
active(length(nil)) -> mark(0)
active(length(cons(X, Y))) -> mark(s(length1(Y)))
active(length1(X)) -> mark(length(X))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(length(X)) -> length(proper(X))
proper(nil) -> ok(nil)
proper(0) -> ok(0)
proper(length1(X)) -> length1(proper(X))
length(ok(X)) -> ok(length(X))
length1(ok(X)) -> ok(length1(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 10
↳Size-Change Principle
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
LENGTH1(ok(X)) -> LENGTH1(X)
none
innermost
|
|
trivial
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳Usable Rules (Innermost)
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
FROM(ok(X)) -> FROM(X)
FROM(mark(X)) -> FROM(X)
active(from(X)) -> mark(cons(X, from(s(X))))
active(length(nil)) -> mark(0)
active(length(cons(X, Y))) -> mark(s(length1(Y)))
active(length1(X)) -> mark(length(X))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(length(X)) -> length(proper(X))
proper(nil) -> ok(nil)
proper(0) -> ok(0)
proper(length1(X)) -> length1(proper(X))
length(ok(X)) -> ok(length(X))
length1(ok(X)) -> ok(length1(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 11
↳Size-Change Principle
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
FROM(ok(X)) -> FROM(X)
FROM(mark(X)) -> FROM(X)
none
innermost
|
|
trivial
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳Usable Rules (Innermost)
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
CONS(mark(X1), X2) -> CONS(X1, X2)
active(from(X)) -> mark(cons(X, from(s(X))))
active(length(nil)) -> mark(0)
active(length(cons(X, Y))) -> mark(s(length1(Y)))
active(length1(X)) -> mark(length(X))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(length(X)) -> length(proper(X))
proper(nil) -> ok(nil)
proper(0) -> ok(0)
proper(length1(X)) -> length1(proper(X))
length(ok(X)) -> ok(length(X))
length1(ok(X)) -> ok(length1(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 12
↳Size-Change Principle
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
CONS(mark(X1), X2) -> CONS(X1, X2)
none
innermost
|
|
|
|
trivial
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳Usable Rules (Innermost)
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
LENGTH(ok(X)) -> LENGTH(X)
active(from(X)) -> mark(cons(X, from(s(X))))
active(length(nil)) -> mark(0)
active(length(cons(X, Y))) -> mark(s(length1(Y)))
active(length1(X)) -> mark(length(X))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(length(X)) -> length(proper(X))
proper(nil) -> ok(nil)
proper(0) -> ok(0)
proper(length1(X)) -> length1(proper(X))
length(ok(X)) -> ok(length(X))
length1(ok(X)) -> ok(length1(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 13
↳Size-Change Principle
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
LENGTH(ok(X)) -> LENGTH(X)
none
innermost
|
|
trivial
ok(x1) -> ok(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳Usable Rules (Innermost)
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(from(X)) -> ACTIVE(X)
active(from(X)) -> mark(cons(X, from(s(X))))
active(length(nil)) -> mark(0)
active(length(cons(X, Y))) -> mark(s(length1(Y)))
active(length1(X)) -> mark(length(X))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(length(X)) -> length(proper(X))
proper(nil) -> ok(nil)
proper(0) -> ok(0)
proper(length1(X)) -> length1(proper(X))
length(ok(X)) -> ok(length(X))
length1(ok(X)) -> ok(length1(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 14
↳Size-Change Principle
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(from(X)) -> ACTIVE(X)
none
innermost
|
|
trivial
from(x1) -> from(x1)
cons(x1, x2) -> cons(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳Usable Rules (Innermost)
→DP Problem 8
↳UsableRules
PROPER(length1(X)) -> PROPER(X)
PROPER(length(X)) -> PROPER(X)
PROPER(s(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(from(X)) -> PROPER(X)
active(from(X)) -> mark(cons(X, from(s(X))))
active(length(nil)) -> mark(0)
active(length(cons(X, Y))) -> mark(s(length1(Y)))
active(length1(X)) -> mark(length(X))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(length(X)) -> length(proper(X))
proper(nil) -> ok(nil)
proper(0) -> ok(0)
proper(length1(X)) -> length1(proper(X))
length(ok(X)) -> ok(length(X))
length1(ok(X)) -> ok(length1(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 15
↳Size-Change Principle
→DP Problem 8
↳UsableRules
PROPER(length1(X)) -> PROPER(X)
PROPER(length(X)) -> PROPER(X)
PROPER(s(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(from(X)) -> PROPER(X)
none
innermost
|
|
trivial
from(x1) -> from(x1)
cons(x1, x2) -> cons(x1, x2)
s(x1) -> s(x1)
length(x1) -> length(x1)
length1(x1) -> length1(x1)
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳Usable Rules (Innermost)
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
active(from(X)) -> mark(cons(X, from(s(X))))
active(length(nil)) -> mark(0)
active(length(cons(X, Y))) -> mark(s(length1(Y)))
active(length1(X)) -> mark(length(X))
active(from(X)) -> from(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
from(mark(X)) -> mark(from(X))
from(ok(X)) -> ok(from(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
proper(from(X)) -> from(proper(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(length(X)) -> length(proper(X))
proper(nil) -> ok(nil)
proper(0) -> ok(0)
proper(length1(X)) -> length1(proper(X))
length(ok(X)) -> ok(length(X))
length1(ok(X)) -> ok(length1(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 16
↳Narrowing Transformation
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(length1(X)) -> mark(length(X))
active(length(nil)) -> mark(0)
active(length(cons(X, Y))) -> mark(s(length1(Y)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(s(X)) -> s(active(X))
active(from(X)) -> from(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
length1(ok(X)) -> ok(length1(X))
length(ok(X)) -> ok(length(X))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
from(ok(X)) -> ok(from(X))
from(mark(X)) -> mark(from(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(length1(X)) -> length1(proper(X))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
proper(from(X)) -> from(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
innermost
seven new Dependency Pairs are created:
TOP(ok(X)) -> TOP(active(X))
TOP(ok(cons(X1', X2'))) -> TOP(cons(active(X1'), X2'))
TOP(ok(length1(X''))) -> TOP(mark(length(X'')))
TOP(ok(length(nil))) -> TOP(mark(0))
TOP(ok(length(cons(X'', Y')))) -> TOP(mark(s(length1(Y'))))
TOP(ok(from(X''))) -> TOP(mark(cons(X'', from(s(X'')))))
TOP(ok(s(X''))) -> TOP(s(active(X'')))
TOP(ok(from(X''))) -> TOP(from(active(X'')))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 16
↳Nar
...
→DP Problem 17
↳Narrowing Transformation
TOP(ok(from(X''))) -> TOP(from(active(X'')))
TOP(ok(s(X''))) -> TOP(s(active(X'')))
TOP(ok(from(X''))) -> TOP(mark(cons(X'', from(s(X'')))))
TOP(ok(length(cons(X'', Y')))) -> TOP(mark(s(length1(Y'))))
TOP(ok(length(nil))) -> TOP(mark(0))
TOP(ok(length1(X''))) -> TOP(mark(length(X'')))
TOP(ok(cons(X1', X2'))) -> TOP(cons(active(X1'), X2'))
TOP(mark(X)) -> TOP(proper(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(length1(X)) -> mark(length(X))
active(length(nil)) -> mark(0)
active(length(cons(X, Y))) -> mark(s(length1(Y)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(s(X)) -> s(active(X))
active(from(X)) -> from(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
length1(ok(X)) -> ok(length1(X))
length(ok(X)) -> ok(length(X))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
from(ok(X)) -> ok(from(X))
from(mark(X)) -> mark(from(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(length1(X)) -> length1(proper(X))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
proper(from(X)) -> from(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
innermost
seven new Dependency Pairs are created:
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(cons(X1', X2'))) -> TOP(cons(proper(X1'), proper(X2')))
TOP(mark(length1(X''))) -> TOP(length1(proper(X'')))
TOP(mark(nil)) -> TOP(ok(nil))
TOP(mark(length(X''))) -> TOP(length(proper(X'')))
TOP(mark(from(X''))) -> TOP(from(proper(X'')))
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(mark(0)) -> TOP(ok(0))
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 16
↳Nar
...
→DP Problem 18
↳Negative Polynomial Order
TOP(mark(length1(X''))) -> TOP(length1(proper(X'')))
TOP(mark(from(X''))) -> TOP(from(proper(X'')))
TOP(ok(s(X''))) -> TOP(s(active(X'')))
TOP(mark(cons(X1', X2'))) -> TOP(cons(proper(X1'), proper(X2')))
TOP(ok(from(X''))) -> TOP(mark(cons(X'', from(s(X'')))))
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(ok(length(cons(X'', Y')))) -> TOP(mark(s(length1(Y'))))
TOP(mark(length(X''))) -> TOP(length(proper(X'')))
TOP(ok(length1(X''))) -> TOP(mark(length(X'')))
TOP(ok(cons(X1', X2'))) -> TOP(cons(active(X1'), X2'))
TOP(ok(from(X''))) -> TOP(from(active(X'')))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(length1(X)) -> mark(length(X))
active(length(nil)) -> mark(0)
active(length(cons(X, Y))) -> mark(s(length1(Y)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(s(X)) -> s(active(X))
active(from(X)) -> from(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
length1(ok(X)) -> ok(length1(X))
length(ok(X)) -> ok(length(X))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
from(ok(X)) -> ok(from(X))
from(mark(X)) -> mark(from(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(length1(X)) -> length1(proper(X))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
proper(from(X)) -> from(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
innermost
TOP(ok(from(X''))) -> TOP(mark(cons(X'', from(s(X'')))))
cons(mark(X1), X2) -> mark(cons(X1, X2))
length1(ok(X)) -> ok(length1(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
s(ok(X)) -> ok(s(X))
proper(length1(X)) -> length1(proper(X))
from(ok(X)) -> ok(from(X))
proper(nil) -> ok(nil)
from(mark(X)) -> mark(from(X))
proper(length(X)) -> length(proper(X))
proper(from(X)) -> from(proper(X))
s(mark(X)) -> mark(s(X))
length(ok(X)) -> ok(length(X))
proper(s(X)) -> s(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
proper(0) -> ok(0)
active(cons(X1, X2)) -> cons(active(X1), X2)
active(length1(X)) -> mark(length(X))
active(length(nil)) -> mark(0)
active(from(X)) -> mark(cons(X, from(s(X))))
active(length(cons(X, Y))) -> mark(s(length1(Y)))
active(s(X)) -> s(active(X))
active(from(X)) -> from(active(X))
POL( TOP(x1) ) = x1
POL( ok(x1) ) = x1
POL( from(x1) ) = 1
POL( mark(x1) ) = x1
POL( cons(x1, x2) ) = 0
POL( length(x1) ) = 0
POL( s(x1) ) = 0
POL( length1(x1) ) = 0
POL( proper(x1) ) = 1
POL( nil ) = 0
POL( 0 ) = 0
POL( active(x1) ) = 1
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 16
↳Nar
...
→DP Problem 19
↳Negative Polynomial Order
TOP(mark(length1(X''))) -> TOP(length1(proper(X'')))
TOP(mark(from(X''))) -> TOP(from(proper(X'')))
TOP(ok(s(X''))) -> TOP(s(active(X'')))
TOP(mark(cons(X1', X2'))) -> TOP(cons(proper(X1'), proper(X2')))
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(ok(length(cons(X'', Y')))) -> TOP(mark(s(length1(Y'))))
TOP(mark(length(X''))) -> TOP(length(proper(X'')))
TOP(ok(length1(X''))) -> TOP(mark(length(X'')))
TOP(ok(cons(X1', X2'))) -> TOP(cons(active(X1'), X2'))
TOP(ok(from(X''))) -> TOP(from(active(X'')))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(length1(X)) -> mark(length(X))
active(length(nil)) -> mark(0)
active(length(cons(X, Y))) -> mark(s(length1(Y)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(s(X)) -> s(active(X))
active(from(X)) -> from(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
length1(ok(X)) -> ok(length1(X))
length(ok(X)) -> ok(length(X))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
from(ok(X)) -> ok(from(X))
from(mark(X)) -> mark(from(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(length1(X)) -> length1(proper(X))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
proper(from(X)) -> from(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
innermost
TOP(ok(length(cons(X'', Y')))) -> TOP(mark(s(length1(Y'))))
cons(mark(X1), X2) -> mark(cons(X1, X2))
length1(ok(X)) -> ok(length1(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
s(ok(X)) -> ok(s(X))
proper(length1(X)) -> length1(proper(X))
from(ok(X)) -> ok(from(X))
proper(nil) -> ok(nil)
from(mark(X)) -> mark(from(X))
proper(length(X)) -> length(proper(X))
proper(from(X)) -> from(proper(X))
s(mark(X)) -> mark(s(X))
length(ok(X)) -> ok(length(X))
proper(s(X)) -> s(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
proper(0) -> ok(0)
active(cons(X1, X2)) -> cons(active(X1), X2)
active(length1(X)) -> mark(length(X))
active(length(nil)) -> mark(0)
active(from(X)) -> mark(cons(X, from(s(X))))
active(length(cons(X, Y))) -> mark(s(length1(Y)))
active(s(X)) -> s(active(X))
active(from(X)) -> from(active(X))
POL( TOP(x1) ) = x1
POL( ok(x1) ) = x1
POL( length(x1) ) = 1
POL( mark(x1) ) = x1
POL( s(x1) ) = 0
POL( cons(x1, x2) ) = 0
POL( from(x1) ) = 0
POL( length1(x1) ) = 1
POL( proper(x1) ) = 1
POL( nil ) = 0
POL( 0 ) = 0
POL( active(x1) ) = 1
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 16
↳Nar
...
→DP Problem 20
↳Negative Polynomial Order
TOP(mark(length1(X''))) -> TOP(length1(proper(X'')))
TOP(mark(from(X''))) -> TOP(from(proper(X'')))
TOP(ok(s(X''))) -> TOP(s(active(X'')))
TOP(mark(cons(X1', X2'))) -> TOP(cons(proper(X1'), proper(X2')))
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(mark(length(X''))) -> TOP(length(proper(X'')))
TOP(ok(length1(X''))) -> TOP(mark(length(X'')))
TOP(ok(cons(X1', X2'))) -> TOP(cons(active(X1'), X2'))
TOP(ok(from(X''))) -> TOP(from(active(X'')))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(length1(X)) -> mark(length(X))
active(length(nil)) -> mark(0)
active(length(cons(X, Y))) -> mark(s(length1(Y)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(s(X)) -> s(active(X))
active(from(X)) -> from(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
length1(ok(X)) -> ok(length1(X))
length(ok(X)) -> ok(length(X))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
from(ok(X)) -> ok(from(X))
from(mark(X)) -> mark(from(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(length1(X)) -> length1(proper(X))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
proper(from(X)) -> from(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
innermost
TOP(mark(length(X''))) -> TOP(length(proper(X'')))
cons(mark(X1), X2) -> mark(cons(X1, X2))
length1(ok(X)) -> ok(length1(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
s(ok(X)) -> ok(s(X))
proper(length1(X)) -> length1(proper(X))
from(ok(X)) -> ok(from(X))
proper(nil) -> ok(nil)
from(mark(X)) -> mark(from(X))
proper(length(X)) -> length(proper(X))
proper(from(X)) -> from(proper(X))
s(mark(X)) -> mark(s(X))
length(ok(X)) -> ok(length(X))
proper(s(X)) -> s(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
proper(0) -> ok(0)
active(cons(X1, X2)) -> cons(active(X1), X2)
active(length1(X)) -> mark(length(X))
active(length(nil)) -> mark(0)
active(from(X)) -> mark(cons(X, from(s(X))))
active(length(cons(X, Y))) -> mark(s(length1(Y)))
active(s(X)) -> s(active(X))
active(from(X)) -> from(active(X))
POL( TOP(x1) ) = x1
POL( mark(x1) ) = 1
POL( length(x1) ) = 0
POL( s(x1) ) = 1
POL( cons(x1, x2) ) = 1
POL( ok(x1) ) = x1
POL( from(x1) ) = 1
POL( length1(x1) ) = 1
POL( proper(x1) ) = 1
POL( nil ) = 0
POL( 0 ) = 0
POL( active(x1) ) = 1
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 16
↳Nar
...
→DP Problem 21
↳Dependency Graph
TOP(mark(length1(X''))) -> TOP(length1(proper(X'')))
TOP(mark(from(X''))) -> TOP(from(proper(X'')))
TOP(ok(s(X''))) -> TOP(s(active(X'')))
TOP(mark(cons(X1', X2'))) -> TOP(cons(proper(X1'), proper(X2')))
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(ok(length1(X''))) -> TOP(mark(length(X'')))
TOP(ok(cons(X1', X2'))) -> TOP(cons(active(X1'), X2'))
TOP(ok(from(X''))) -> TOP(from(active(X'')))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(length1(X)) -> mark(length(X))
active(length(nil)) -> mark(0)
active(length(cons(X, Y))) -> mark(s(length1(Y)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(s(X)) -> s(active(X))
active(from(X)) -> from(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
length1(ok(X)) -> ok(length1(X))
length(ok(X)) -> ok(length(X))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
from(ok(X)) -> ok(from(X))
from(mark(X)) -> mark(from(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(length1(X)) -> length1(proper(X))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
proper(from(X)) -> from(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
innermost
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 16
↳Nar
...
→DP Problem 22
↳Negative Polynomial Order
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(mark(from(X''))) -> TOP(from(proper(X'')))
TOP(mark(cons(X1', X2'))) -> TOP(cons(proper(X1'), proper(X2')))
TOP(ok(from(X''))) -> TOP(from(active(X'')))
TOP(ok(s(X''))) -> TOP(s(active(X'')))
TOP(ok(cons(X1', X2'))) -> TOP(cons(active(X1'), X2'))
TOP(mark(length1(X''))) -> TOP(length1(proper(X'')))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(length1(X)) -> mark(length(X))
active(length(nil)) -> mark(0)
active(length(cons(X, Y))) -> mark(s(length1(Y)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(s(X)) -> s(active(X))
active(from(X)) -> from(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
length1(ok(X)) -> ok(length1(X))
length(ok(X)) -> ok(length(X))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
from(ok(X)) -> ok(from(X))
from(mark(X)) -> mark(from(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(length1(X)) -> length1(proper(X))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
proper(from(X)) -> from(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
innermost
TOP(mark(length1(X''))) -> TOP(length1(proper(X'')))
cons(mark(X1), X2) -> mark(cons(X1, X2))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
length1(ok(X)) -> ok(length1(X))
s(ok(X)) -> ok(s(X))
proper(length1(X)) -> length1(proper(X))
from(ok(X)) -> ok(from(X))
from(mark(X)) -> mark(from(X))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
proper(from(X)) -> from(proper(X))
s(mark(X)) -> mark(s(X))
length(ok(X)) -> ok(length(X))
proper(s(X)) -> s(proper(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
proper(0) -> ok(0)
active(cons(X1, X2)) -> cons(active(X1), X2)
active(length1(X)) -> mark(length(X))
active(length(nil)) -> mark(0)
active(from(X)) -> mark(cons(X, from(s(X))))
active(length(cons(X, Y))) -> mark(s(length1(Y)))
active(s(X)) -> s(active(X))
active(from(X)) -> from(active(X))
POL( TOP(x1) ) = x1
POL( mark(x1) ) = 1
POL( length1(x1) ) = 0
POL( s(x1) ) = 1
POL( cons(x1, x2) ) = 1
POL( ok(x1) ) = x1
POL( from(x1) ) = 1
POL( proper(x1) ) = 1
POL( nil ) = 0
POL( length(x1) ) = 0
POL( 0 ) = 0
POL( active(x1) ) = 1
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
→DP Problem 4
↳UsableRules
→DP Problem 5
↳UsableRules
→DP Problem 6
↳UsableRules
→DP Problem 7
↳UsableRules
→DP Problem 8
↳UsableRules
→DP Problem 16
↳Nar
...
→DP Problem 23
↳Remaining Obligation(s)
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(mark(from(X''))) -> TOP(from(proper(X'')))
TOP(mark(cons(X1', X2'))) -> TOP(cons(proper(X1'), proper(X2')))
TOP(ok(from(X''))) -> TOP(from(active(X'')))
TOP(ok(s(X''))) -> TOP(s(active(X'')))
TOP(ok(cons(X1', X2'))) -> TOP(cons(active(X1'), X2'))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(length1(X)) -> mark(length(X))
active(length(nil)) -> mark(0)
active(length(cons(X, Y))) -> mark(s(length1(Y)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(s(X)) -> s(active(X))
active(from(X)) -> from(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
length1(ok(X)) -> ok(length1(X))
length(ok(X)) -> ok(length(X))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
from(ok(X)) -> ok(from(X))
from(mark(X)) -> mark(from(X))
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(length1(X)) -> length1(proper(X))
proper(nil) -> ok(nil)
proper(length(X)) -> length(proper(X))
proper(from(X)) -> from(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
innermost