R
↳Dependency Pair Analysis
MINUS(s(x), s(y)) -> MINUS(x, y)
LE(s(x), s(y)) -> LE(x, y)
PERFECTP(s(x)) -> F(x, s(0), s(x), s(x))
F(s(x), 0, z, u) -> F(x, u, minus(z, s(x)), u)
F(s(x), 0, z, u) -> MINUS(z, s(x))
F(s(x), s(y), z, u) -> IF(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
F(s(x), s(y), z, u) -> LE(x, y)
F(s(x), s(y), z, u) -> F(s(x), minus(y, x), z, u)
F(s(x), s(y), z, u) -> MINUS(y, x)
F(s(x), s(y), z, u) -> F(x, u, z, u)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
MINUS(s(x), s(y)) -> MINUS(x, y)
minus(0, y) -> 0
minus(s(x), 0) -> s(x)
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
perfectp(0) -> false
perfectp(s(x)) -> f(x, s(0), s(x), s(x))
f(0, y, 0, u) -> true
f(0, y, s(z), u) -> false
f(s(x), 0, z, u) -> f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
innermost
MINUS(s(x), s(y)) -> MINUS(x, y)
POL(MINUS(x1, x2)) = x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 4
↳Dependency Graph
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
minus(0, y) -> 0
minus(s(x), 0) -> s(x)
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
perfectp(0) -> false
perfectp(s(x)) -> f(x, s(0), s(x), s(x))
f(0, y, 0, u) -> true
f(0, y, s(z), u) -> false
f(s(x), 0, z, u) -> f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
→DP Problem 3
↳Polo
LE(s(x), s(y)) -> LE(x, y)
minus(0, y) -> 0
minus(s(x), 0) -> s(x)
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
perfectp(0) -> false
perfectp(s(x)) -> f(x, s(0), s(x), s(x))
f(0, y, 0, u) -> true
f(0, y, s(z), u) -> false
f(s(x), 0, z, u) -> f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
innermost
LE(s(x), s(y)) -> LE(x, y)
POL(LE(x1, x2)) = x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 5
↳Dependency Graph
→DP Problem 3
↳Polo
minus(0, y) -> 0
minus(s(x), 0) -> s(x)
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
perfectp(0) -> false
perfectp(s(x)) -> f(x, s(0), s(x), s(x))
f(0, y, 0, u) -> true
f(0, y, s(z), u) -> false
f(s(x), 0, z, u) -> f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polynomial Ordering
F(s(x), s(y), z, u) -> F(x, u, z, u)
F(s(x), 0, z, u) -> F(x, u, minus(z, s(x)), u)
F(s(x), s(y), z, u) -> F(s(x), minus(y, x), z, u)
minus(0, y) -> 0
minus(s(x), 0) -> s(x)
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
perfectp(0) -> false
perfectp(s(x)) -> f(x, s(0), s(x), s(x))
f(0, y, 0, u) -> true
f(0, y, s(z), u) -> false
f(s(x), 0, z, u) -> f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
innermost
F(s(x), s(y), z, u) -> F(x, u, z, u)
F(s(x), 0, z, u) -> F(x, u, minus(z, s(x)), u)
minus(0, y) -> 0
minus(s(x), 0) -> s(x)
minus(s(x), s(y)) -> minus(x, y)
POL(0) = 0 POL(minus(x1, x2)) = x1 POL(s(x1)) = 1 + x1 POL(F(x1, x2, x3, x4)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 6
↳Polynomial Ordering
F(s(x), s(y), z, u) -> F(s(x), minus(y, x), z, u)
minus(0, y) -> 0
minus(s(x), 0) -> s(x)
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
perfectp(0) -> false
perfectp(s(x)) -> f(x, s(0), s(x), s(x))
f(0, y, 0, u) -> true
f(0, y, s(z), u) -> false
f(s(x), 0, z, u) -> f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
innermost
F(s(x), s(y), z, u) -> F(s(x), minus(y, x), z, u)
minus(0, y) -> 0
minus(s(x), 0) -> s(x)
minus(s(x), s(y)) -> minus(x, y)
POL(0) = 0 POL(minus(x1, x2)) = x1 POL(s(x1)) = 1 + x1 POL(F(x1, x2, x3, x4)) = 1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 6
↳Polo
...
→DP Problem 7
↳Dependency Graph
minus(0, y) -> 0
minus(s(x), 0) -> s(x)
minus(s(x), s(y)) -> minus(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
perfectp(0) -> false
perfectp(s(x)) -> f(x, s(0), s(x), s(x))
f(0, y, 0, u) -> true
f(0, y, s(z), u) -> false
f(s(x), 0, z, u) -> f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
innermost