R
↳Dependency Pair Analysis
PERFECTP(s(x)) -> F(x, s(0), s(x), s(x))
F(s(x), 0, z, u) -> F(x, u, minus(z, s(x)), u)
F(s(x), s(y), z, u) -> F(s(x), minus(y, x), z, u)
F(s(x), s(y), z, u) -> F(x, u, z, u)
R
↳DPs
→DP Problem 1
↳Instantiation Transformation
F(s(x), 0, z, u) -> F(x, u, minus(z, s(x)), u)
F(s(x), s(y), z, u) -> F(x, u, z, u)
perfectp(0) -> false
perfectp(s(x)) -> f(x, s(0), s(x), s(x))
f(0, y, 0, u) -> true
f(0, y, s(z), u) -> false
f(s(x), 0, z, u) -> f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
innermost
two new Dependency Pairs are created:
F(s(x), 0, z, u) -> F(x, u, minus(z, s(x)), u)
F(s(x''), 0, minus(z'', s(s(x''))), 0) -> F(x'', 0, minus(minus(z'', s(s(x''))), s(x'')), 0)
F(s(x''), 0, z'', 0) -> F(x'', 0, minus(z'', s(x'')), 0)
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Instantiation Transformation
→DP Problem 3
↳Inst
F(s(x''), 0, z'', 0) -> F(x'', 0, minus(z'', s(x'')), 0)
F(s(x''), 0, minus(z'', s(s(x''))), 0) -> F(x'', 0, minus(minus(z'', s(s(x''))), s(x'')), 0)
perfectp(0) -> false
perfectp(s(x)) -> f(x, s(0), s(x), s(x))
f(0, y, 0, u) -> true
f(0, y, s(z), u) -> false
f(s(x), 0, z, u) -> f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
innermost
two new Dependency Pairs are created:
F(s(x''), 0, z'', 0) -> F(x'', 0, minus(z'', s(x'')), 0)
F(s(x''''), 0, minus(minus(z'''', s(s(s(x'''')))), s(s(x''''))), 0) -> F(x'''', 0, minus(minus(minus(z'''', s(s(s(x'''')))), s(s(x''''))), s(x'''')), 0)
F(s(x''''), 0, minus(z'''', s(s(x''''))), 0) -> F(x'''', 0, minus(minus(z'''', s(s(x''''))), s(x'''')), 0)
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
...
→DP Problem 4
↳Instantiation Transformation
→DP Problem 3
↳Inst
F(s(x''''), 0, minus(z'''', s(s(x''''))), 0) -> F(x'''', 0, minus(minus(z'''', s(s(x''''))), s(x'''')), 0)
F(s(x''''), 0, minus(minus(z'''', s(s(s(x'''')))), s(s(x''''))), 0) -> F(x'''', 0, minus(minus(minus(z'''', s(s(s(x'''')))), s(s(x''''))), s(x'''')), 0)
F(s(x''), 0, minus(z'', s(s(x''))), 0) -> F(x'', 0, minus(minus(z'', s(s(x''))), s(x'')), 0)
perfectp(0) -> false
perfectp(s(x)) -> f(x, s(0), s(x), s(x))
f(0, y, 0, u) -> true
f(0, y, s(z), u) -> false
f(s(x), 0, z, u) -> f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
innermost
three new Dependency Pairs are created:
F(s(x''), 0, minus(z'', s(s(x''))), 0) -> F(x'', 0, minus(minus(z'', s(s(x''))), s(x'')), 0)
F(s(x''''), 0, minus(minus(z'''', s(s(s(x'''')))), s(s(x''''))), 0) -> F(x'''', 0, minus(minus(minus(z'''', s(s(s(x'''')))), s(s(x''''))), s(x'''')), 0)
F(s(x'''), 0, minus(minus(minus(z'''''', s(s(s(s(x'''))))), s(s(s(x''')))), s(s(x'''))), 0) -> F(x''', 0, minus(minus(minus(minus(z'''''', s(s(s(s(x'''))))), s(s(s(x''')))), s(s(x'''))), s(x''')), 0)
F(s(x'''), 0, minus(minus(z'''''', s(s(s(x''')))), s(s(x'''))), 0) -> F(x''', 0, minus(minus(minus(z'''''', s(s(s(x''')))), s(s(x'''))), s(x''')), 0)
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
...
→DP Problem 6
↳Argument Filtering and Ordering
→DP Problem 3
↳Inst
F(s(x'''), 0, minus(minus(z'''''', s(s(s(x''')))), s(s(x'''))), 0) -> F(x''', 0, minus(minus(minus(z'''''', s(s(s(x''')))), s(s(x'''))), s(x''')), 0)
F(s(x'''), 0, minus(minus(minus(z'''''', s(s(s(s(x'''))))), s(s(s(x''')))), s(s(x'''))), 0) -> F(x''', 0, minus(minus(minus(minus(z'''''', s(s(s(s(x'''))))), s(s(s(x''')))), s(s(x'''))), s(x''')), 0)
F(s(x''''), 0, minus(minus(z'''', s(s(s(x'''')))), s(s(x''''))), 0) -> F(x'''', 0, minus(minus(minus(z'''', s(s(s(x'''')))), s(s(x''''))), s(x'''')), 0)
F(s(x''''), 0, minus(minus(z'''', s(s(s(x'''')))), s(s(x''''))), 0) -> F(x'''', 0, minus(minus(minus(z'''', s(s(s(x'''')))), s(s(x''''))), s(x'''')), 0)
F(s(x''''), 0, minus(z'''', s(s(x''''))), 0) -> F(x'''', 0, minus(minus(z'''', s(s(x''''))), s(x'''')), 0)
perfectp(0) -> false
perfectp(s(x)) -> f(x, s(0), s(x), s(x))
f(0, y, 0, u) -> true
f(0, y, s(z), u) -> false
f(s(x), 0, z, u) -> f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
innermost
F(s(x'''), 0, minus(minus(z'''''', s(s(s(x''')))), s(s(x'''))), 0) -> F(x''', 0, minus(minus(minus(z'''''', s(s(s(x''')))), s(s(x'''))), s(x''')), 0)
F(s(x'''), 0, minus(minus(minus(z'''''', s(s(s(s(x'''))))), s(s(s(x''')))), s(s(x'''))), 0) -> F(x''', 0, minus(minus(minus(minus(z'''''', s(s(s(s(x'''))))), s(s(s(x''')))), s(s(x'''))), s(x''')), 0)
F(s(x''''), 0, minus(minus(z'''', s(s(s(x'''')))), s(s(x''''))), 0) -> F(x'''', 0, minus(minus(minus(z'''', s(s(s(x'''')))), s(s(x''''))), s(x'''')), 0)
F(s(x''''), 0, minus(z'''', s(s(x''''))), 0) -> F(x'''', 0, minus(minus(z'''', s(s(x''''))), s(x'''')), 0)
POL(0) = 0 POL(s(x1)) = 1 + x1 POL(F(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
F(x1, x2, x3, x4) -> F(x1, x2, x3, x4)
s(x1) -> s(x1)
minus(x1, x2) -> x1
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
...
→DP Problem 8
↳Dependency Graph
→DP Problem 3
↳Inst
perfectp(0) -> false
perfectp(s(x)) -> f(x, s(0), s(x), s(x))
f(0, y, 0, u) -> true
f(0, y, s(z), u) -> false
f(s(x), 0, z, u) -> f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
innermost
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
→DP Problem 3
↳Instantiation Transformation
F(s(x), s(y), z, u) -> F(x, u, z, u)
perfectp(0) -> false
perfectp(s(x)) -> f(x, s(0), s(x), s(x))
f(0, y, 0, u) -> true
f(0, y, s(z), u) -> false
f(s(x), 0, z, u) -> f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
innermost
one new Dependency Pair is created:
F(s(x), s(y), z, u) -> F(x, u, z, u)
F(s(x''), s(y'), z'', s(y')) -> F(x'', s(y'), z'', s(y'))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
→DP Problem 3
↳Inst
...
→DP Problem 5
↳Forward Instantiation Transformation
F(s(x''), s(y'), z'', s(y')) -> F(x'', s(y'), z'', s(y'))
perfectp(0) -> false
perfectp(s(x)) -> f(x, s(0), s(x), s(x))
f(0, y, 0, u) -> true
f(0, y, s(z), u) -> false
f(s(x), 0, z, u) -> f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
innermost
one new Dependency Pair is created:
F(s(x''), s(y'), z'', s(y')) -> F(x'', s(y'), z'', s(y'))
F(s(s(x'''')), s(y'0), z'''', s(y'0)) -> F(s(x''''), s(y'0), z'''', s(y'0))
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Inst
→DP Problem 3
↳Inst
...
→DP Problem 7
↳Argument Filtering and Ordering
F(s(s(x'''')), s(y'0), z'''', s(y'0)) -> F(s(x''''), s(y'0), z'''', s(y'0))
perfectp(0) -> false
perfectp(s(x)) -> f(x, s(0), s(x), s(x))
f(0, y, 0, u) -> true
f(0, y, s(z), u) -> false
f(s(x), 0, z, u) -> f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
innermost
F(s(s(x'''')), s(y'0), z'''', s(y'0)) -> F(s(x''''), s(y'0), z'''', s(y'0))
POL(s(x1)) = 1 + x1 POL(F(x1, x2, x3, x4)) = 1 + x1 + x2 + x3 + x4
F(x1, x2, x3, x4) -> F(x1, x2, x3, x4)
s(x1) -> s(x1)