R
↳Dependency Pair Analysis
LE(s(x), s(y)) -> LE(x, y)
EQ(s(x), s(y)) -> EQ(x, y)
MINSORT(cons(x, y)) -> MIN(x, y)
MINSORT(cons(x, y)) -> MINSORT(del(min(x, y), cons(x, y)))
MINSORT(cons(x, y)) -> DEL(min(x, y), cons(x, y))
MIN(x, cons(y, z)) -> IF(le(x, y), min(x, z), min(y, z))
MIN(x, cons(y, z)) -> LE(x, y)
MIN(x, cons(y, z)) -> MIN(x, z)
MIN(x, cons(y, z)) -> MIN(y, z)
DEL(x, cons(y, z)) -> IF(eq(x, y), z, cons(y, del(x, z)))
DEL(x, cons(y, z)) -> EQ(x, y)
DEL(x, cons(y, z)) -> DEL(x, z)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Rw
LE(s(x), s(y)) -> LE(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
eq(0, 0) -> true
eq(0, s(y)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
minsort(nil) -> nil
minsort(cons(x, y)) -> cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
min(x, nil) -> x
min(x, cons(y, z)) -> if(le(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, cons(y, z)) -> if(eq(x, y), z, cons(y, del(x, z)))
innermost
LE(s(x), s(y)) -> LE(x, y)
POL(LE(x1, x2)) = x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 6
↳Dependency Graph
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Rw
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
eq(0, 0) -> true
eq(0, s(y)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
minsort(nil) -> nil
minsort(cons(x, y)) -> cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
min(x, nil) -> x
min(x, cons(y, z)) -> if(le(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, cons(y, z)) -> if(eq(x, y), z, cons(y, del(x, z)))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Rw
EQ(s(x), s(y)) -> EQ(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
eq(0, 0) -> true
eq(0, s(y)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
minsort(nil) -> nil
minsort(cons(x, y)) -> cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
min(x, nil) -> x
min(x, cons(y, z)) -> if(le(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, cons(y, z)) -> if(eq(x, y), z, cons(y, del(x, z)))
innermost
EQ(s(x), s(y)) -> EQ(x, y)
POL(EQ(x1, x2)) = x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 7
↳Dependency Graph
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Rw
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
eq(0, 0) -> true
eq(0, s(y)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
minsort(nil) -> nil
minsort(cons(x, y)) -> cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
min(x, nil) -> x
min(x, cons(y, z)) -> if(le(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, cons(y, z)) -> if(eq(x, y), z, cons(y, del(x, z)))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polynomial Ordering
→DP Problem 4
↳Polo
→DP Problem 5
↳Rw
MIN(x, cons(y, z)) -> MIN(y, z)
MIN(x, cons(y, z)) -> MIN(x, z)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
eq(0, 0) -> true
eq(0, s(y)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
minsort(nil) -> nil
minsort(cons(x, y)) -> cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
min(x, nil) -> x
min(x, cons(y, z)) -> if(le(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, cons(y, z)) -> if(eq(x, y), z, cons(y, del(x, z)))
innermost
MIN(x, cons(y, z)) -> MIN(y, z)
MIN(x, cons(y, z)) -> MIN(x, z)
POL(cons(x1, x2)) = 1 + x2 POL(MIN(x1, x2)) = x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 8
↳Dependency Graph
→DP Problem 4
↳Polo
→DP Problem 5
↳Rw
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
eq(0, 0) -> true
eq(0, s(y)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
minsort(nil) -> nil
minsort(cons(x, y)) -> cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
min(x, nil) -> x
min(x, cons(y, z)) -> if(le(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, cons(y, z)) -> if(eq(x, y), z, cons(y, del(x, z)))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polynomial Ordering
→DP Problem 5
↳Rw
DEL(x, cons(y, z)) -> DEL(x, z)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
eq(0, 0) -> true
eq(0, s(y)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
minsort(nil) -> nil
minsort(cons(x, y)) -> cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
min(x, nil) -> x
min(x, cons(y, z)) -> if(le(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, cons(y, z)) -> if(eq(x, y), z, cons(y, del(x, z)))
innermost
DEL(x, cons(y, z)) -> DEL(x, z)
POL(DEL(x1, x2)) = x2 POL(cons(x1, x2)) = 1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 9
↳Dependency Graph
→DP Problem 5
↳Rw
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
eq(0, 0) -> true
eq(0, s(y)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
minsort(nil) -> nil
minsort(cons(x, y)) -> cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
min(x, nil) -> x
min(x, cons(y, z)) -> if(le(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, cons(y, z)) -> if(eq(x, y), z, cons(y, del(x, z)))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Rewriting Transformation
MINSORT(cons(x, y)) -> MINSORT(del(min(x, y), cons(x, y)))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
eq(0, 0) -> true
eq(0, s(y)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
minsort(nil) -> nil
minsort(cons(x, y)) -> cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
min(x, nil) -> x
min(x, cons(y, z)) -> if(le(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, cons(y, z)) -> if(eq(x, y), z, cons(y, del(x, z)))
innermost
one new Dependency Pair is created:
MINSORT(cons(x, y)) -> MINSORT(del(min(x, y), cons(x, y)))
MINSORT(cons(x, y)) -> MINSORT(if(eq(min(x, y), x), y, cons(x, del(min(x, y), y))))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Rw
→DP Problem 10
↳Narrowing Transformation
MINSORT(cons(x, y)) -> MINSORT(if(eq(min(x, y), x), y, cons(x, del(min(x, y), y))))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
eq(0, 0) -> true
eq(0, s(y)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
minsort(nil) -> nil
minsort(cons(x, y)) -> cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
min(x, nil) -> x
min(x, cons(y, z)) -> if(le(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, cons(y, z)) -> if(eq(x, y), z, cons(y, del(x, z)))
innermost
six new Dependency Pairs are created:
MINSORT(cons(x, y)) -> MINSORT(if(eq(min(x, y), x), y, cons(x, del(min(x, y), y))))
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(x'', x''), nil, cons(x'', del(min(x'', nil), nil))))
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), x''), cons(y'', z'), cons(x'', del(min(x'', cons(y'', z')), cons(y'', z')))))
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(min(x'', nil), x''), nil, cons(x'', nil)))
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(min(x'', cons(y'', z')), x''), cons(y'', z'), cons(x'', if(eq(min(x'', cons(y'', z')), y''), z', cons(y'', del(min(x'', cons(y'', z')), z'))))))
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(min(x'', nil), x''), nil, cons(x'', del(x'', nil))))
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(min(x'', cons(y'', z')), x''), cons(y'', z'), cons(x'', del(if(le(x'', y''), min(x'', z'), min(y'', z')), cons(y'', z')))))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Rw
→DP Problem 10
↳Nar
...
→DP Problem 11
↳Rewriting Transformation
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(min(x'', cons(y'', z')), x''), cons(y'', z'), cons(x'', del(if(le(x'', y''), min(x'', z'), min(y'', z')), cons(y'', z')))))
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(min(x'', nil), x''), nil, cons(x'', del(x'', nil))))
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(min(x'', cons(y'', z')), x''), cons(y'', z'), cons(x'', if(eq(min(x'', cons(y'', z')), y''), z', cons(y'', del(min(x'', cons(y'', z')), z'))))))
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(min(x'', nil), x''), nil, cons(x'', nil)))
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), x''), cons(y'', z'), cons(x'', del(min(x'', cons(y'', z')), cons(y'', z')))))
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(x'', x''), nil, cons(x'', del(min(x'', nil), nil))))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
eq(0, 0) -> true
eq(0, s(y)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
minsort(nil) -> nil
minsort(cons(x, y)) -> cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
min(x, nil) -> x
min(x, cons(y, z)) -> if(le(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, cons(y, z)) -> if(eq(x, y), z, cons(y, del(x, z)))
innermost
one new Dependency Pair is created:
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(x'', x''), nil, cons(x'', del(min(x'', nil), nil))))
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(x'', x''), nil, cons(x'', nil)))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Rw
→DP Problem 10
↳Nar
...
→DP Problem 12
↳Rewriting Transformation
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(x'', x''), nil, cons(x'', nil)))
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(min(x'', nil), x''), nil, cons(x'', del(x'', nil))))
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(min(x'', cons(y'', z')), x''), cons(y'', z'), cons(x'', if(eq(min(x'', cons(y'', z')), y''), z', cons(y'', del(min(x'', cons(y'', z')), z'))))))
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(min(x'', nil), x''), nil, cons(x'', nil)))
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), x''), cons(y'', z'), cons(x'', del(min(x'', cons(y'', z')), cons(y'', z')))))
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(min(x'', cons(y'', z')), x''), cons(y'', z'), cons(x'', del(if(le(x'', y''), min(x'', z'), min(y'', z')), cons(y'', z')))))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
eq(0, 0) -> true
eq(0, s(y)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
minsort(nil) -> nil
minsort(cons(x, y)) -> cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
min(x, nil) -> x
min(x, cons(y, z)) -> if(le(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, cons(y, z)) -> if(eq(x, y), z, cons(y, del(x, z)))
innermost
one new Dependency Pair is created:
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), x''), cons(y'', z'), cons(x'', del(min(x'', cons(y'', z')), cons(y'', z')))))
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), x''), cons(y'', z'), cons(x'', if(eq(min(x'', cons(y'', z')), y''), z', cons(y'', del(min(x'', cons(y'', z')), z'))))))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Rw
→DP Problem 10
↳Nar
...
→DP Problem 13
↳Rewriting Transformation
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), x''), cons(y'', z'), cons(x'', if(eq(min(x'', cons(y'', z')), y''), z', cons(y'', del(min(x'', cons(y'', z')), z'))))))
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(min(x'', cons(y'', z')), x''), cons(y'', z'), cons(x'', del(if(le(x'', y''), min(x'', z'), min(y'', z')), cons(y'', z')))))
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(min(x'', nil), x''), nil, cons(x'', del(x'', nil))))
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(min(x'', cons(y'', z')), x''), cons(y'', z'), cons(x'', if(eq(min(x'', cons(y'', z')), y''), z', cons(y'', del(min(x'', cons(y'', z')), z'))))))
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(min(x'', nil), x''), nil, cons(x'', nil)))
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(x'', x''), nil, cons(x'', nil)))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
eq(0, 0) -> true
eq(0, s(y)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
minsort(nil) -> nil
minsort(cons(x, y)) -> cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
min(x, nil) -> x
min(x, cons(y, z)) -> if(le(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, cons(y, z)) -> if(eq(x, y), z, cons(y, del(x, z)))
innermost
one new Dependency Pair is created:
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(min(x'', nil), x''), nil, cons(x'', nil)))
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(x'', x''), nil, cons(x'', nil)))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Rw
→DP Problem 10
↳Nar
...
→DP Problem 14
↳Rewriting Transformation
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(x'', x''), nil, cons(x'', nil)))
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(x'', x''), nil, cons(x'', nil)))
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(min(x'', cons(y'', z')), x''), cons(y'', z'), cons(x'', del(if(le(x'', y''), min(x'', z'), min(y'', z')), cons(y'', z')))))
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(min(x'', nil), x''), nil, cons(x'', del(x'', nil))))
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(min(x'', cons(y'', z')), x''), cons(y'', z'), cons(x'', if(eq(min(x'', cons(y'', z')), y''), z', cons(y'', del(min(x'', cons(y'', z')), z'))))))
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), x''), cons(y'', z'), cons(x'', if(eq(min(x'', cons(y'', z')), y''), z', cons(y'', del(min(x'', cons(y'', z')), z'))))))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
eq(0, 0) -> true
eq(0, s(y)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
minsort(nil) -> nil
minsort(cons(x, y)) -> cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
min(x, nil) -> x
min(x, cons(y, z)) -> if(le(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, cons(y, z)) -> if(eq(x, y), z, cons(y, del(x, z)))
innermost
one new Dependency Pair is created:
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(min(x'', cons(y'', z')), x''), cons(y'', z'), cons(x'', if(eq(min(x'', cons(y'', z')), y''), z', cons(y'', del(min(x'', cons(y'', z')), z'))))))
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), x''), cons(y'', z'), cons(x'', if(eq(min(x'', cons(y'', z')), y''), z', cons(y'', del(min(x'', cons(y'', z')), z'))))))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Rw
→DP Problem 10
↳Nar
...
→DP Problem 15
↳Rewriting Transformation
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), x''), cons(y'', z'), cons(x'', if(eq(min(x'', cons(y'', z')), y''), z', cons(y'', del(min(x'', cons(y'', z')), z'))))))
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), x''), cons(y'', z'), cons(x'', if(eq(min(x'', cons(y'', z')), y''), z', cons(y'', del(min(x'', cons(y'', z')), z'))))))
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(x'', x''), nil, cons(x'', nil)))
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(min(x'', cons(y'', z')), x''), cons(y'', z'), cons(x'', del(if(le(x'', y''), min(x'', z'), min(y'', z')), cons(y'', z')))))
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(min(x'', nil), x''), nil, cons(x'', del(x'', nil))))
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(x'', x''), nil, cons(x'', nil)))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
eq(0, 0) -> true
eq(0, s(y)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
minsort(nil) -> nil
minsort(cons(x, y)) -> cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
min(x, nil) -> x
min(x, cons(y, z)) -> if(le(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, cons(y, z)) -> if(eq(x, y), z, cons(y, del(x, z)))
innermost
one new Dependency Pair is created:
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(min(x'', nil), x''), nil, cons(x'', del(x'', nil))))
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(x'', x''), nil, cons(x'', del(x'', nil))))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Rw
→DP Problem 10
↳Nar
...
→DP Problem 16
↳Rewriting Transformation
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(x'', x''), nil, cons(x'', del(x'', nil))))
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(x'', x''), nil, cons(x'', nil)))
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), x''), cons(y'', z'), cons(x'', if(eq(min(x'', cons(y'', z')), y''), z', cons(y'', del(min(x'', cons(y'', z')), z'))))))
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(x'', x''), nil, cons(x'', nil)))
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(min(x'', cons(y'', z')), x''), cons(y'', z'), cons(x'', del(if(le(x'', y''), min(x'', z'), min(y'', z')), cons(y'', z')))))
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), x''), cons(y'', z'), cons(x'', if(eq(min(x'', cons(y'', z')), y''), z', cons(y'', del(min(x'', cons(y'', z')), z'))))))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
eq(0, 0) -> true
eq(0, s(y)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
minsort(nil) -> nil
minsort(cons(x, y)) -> cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
min(x, nil) -> x
min(x, cons(y, z)) -> if(le(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, cons(y, z)) -> if(eq(x, y), z, cons(y, del(x, z)))
innermost
one new Dependency Pair is created:
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(min(x'', cons(y'', z')), x''), cons(y'', z'), cons(x'', del(if(le(x'', y''), min(x'', z'), min(y'', z')), cons(y'', z')))))
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), x''), cons(y'', z'), cons(x'', del(if(le(x'', y''), min(x'', z'), min(y'', z')), cons(y'', z')))))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Rw
→DP Problem 10
↳Nar
...
→DP Problem 17
↳Rewriting Transformation
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), x''), cons(y'', z'), cons(x'', del(if(le(x'', y''), min(x'', z'), min(y'', z')), cons(y'', z')))))
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), x''), cons(y'', z'), cons(x'', if(eq(min(x'', cons(y'', z')), y''), z', cons(y'', del(min(x'', cons(y'', z')), z'))))))
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(x'', x''), nil, cons(x'', nil)))
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), x''), cons(y'', z'), cons(x'', if(eq(min(x'', cons(y'', z')), y''), z', cons(y'', del(min(x'', cons(y'', z')), z'))))))
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(x'', x''), nil, cons(x'', nil)))
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(x'', x''), nil, cons(x'', del(x'', nil))))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
eq(0, 0) -> true
eq(0, s(y)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
minsort(nil) -> nil
minsort(cons(x, y)) -> cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
min(x, nil) -> x
min(x, cons(y, z)) -> if(le(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, cons(y, z)) -> if(eq(x, y), z, cons(y, del(x, z)))
innermost
one new Dependency Pair is created:
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), x''), cons(y'', z'), cons(x'', if(eq(min(x'', cons(y'', z')), y''), z', cons(y'', del(min(x'', cons(y'', z')), z'))))))
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), x''), cons(y'', z'), cons(x'', if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), y''), z', cons(y'', del(min(x'', cons(y'', z')), z'))))))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Rw
→DP Problem 10
↳Nar
...
→DP Problem 18
↳Rewriting Transformation
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), x''), cons(y'', z'), cons(x'', if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), y''), z', cons(y'', del(min(x'', cons(y'', z')), z'))))))
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(x'', x''), nil, cons(x'', del(x'', nil))))
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), x''), cons(y'', z'), cons(x'', if(eq(min(x'', cons(y'', z')), y''), z', cons(y'', del(min(x'', cons(y'', z')), z'))))))
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(x'', x''), nil, cons(x'', nil)))
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(x'', x''), nil, cons(x'', nil)))
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), x''), cons(y'', z'), cons(x'', del(if(le(x'', y''), min(x'', z'), min(y'', z')), cons(y'', z')))))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
eq(0, 0) -> true
eq(0, s(y)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
minsort(nil) -> nil
minsort(cons(x, y)) -> cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
min(x, nil) -> x
min(x, cons(y, z)) -> if(le(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, cons(y, z)) -> if(eq(x, y), z, cons(y, del(x, z)))
innermost
one new Dependency Pair is created:
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), x''), cons(y'', z'), cons(x'', if(eq(min(x'', cons(y'', z')), y''), z', cons(y'', del(min(x'', cons(y'', z')), z'))))))
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), x''), cons(y'', z'), cons(x'', if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), y''), z', cons(y'', del(min(x'', cons(y'', z')), z'))))))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Rw
→DP Problem 10
↳Nar
...
→DP Problem 19
↳Rewriting Transformation
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), x''), cons(y'', z'), cons(x'', if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), y''), z', cons(y'', del(min(x'', cons(y'', z')), z'))))))
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), x''), cons(y'', z'), cons(x'', del(if(le(x'', y''), min(x'', z'), min(y'', z')), cons(y'', z')))))
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(x'', x''), nil, cons(x'', del(x'', nil))))
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(x'', x''), nil, cons(x'', nil)))
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(x'', x''), nil, cons(x'', nil)))
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), x''), cons(y'', z'), cons(x'', if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), y''), z', cons(y'', del(min(x'', cons(y'', z')), z'))))))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
eq(0, 0) -> true
eq(0, s(y)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
minsort(nil) -> nil
minsort(cons(x, y)) -> cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
min(x, nil) -> x
min(x, cons(y, z)) -> if(le(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, cons(y, z)) -> if(eq(x, y), z, cons(y, del(x, z)))
innermost
one new Dependency Pair is created:
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(x'', x''), nil, cons(x'', del(x'', nil))))
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(x'', x''), nil, cons(x'', nil)))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Rw
→DP Problem 10
↳Nar
...
→DP Problem 20
↳Rewriting Transformation
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(x'', x''), nil, cons(x'', nil)))
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), x''), cons(y'', z'), cons(x'', if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), y''), z', cons(y'', del(min(x'', cons(y'', z')), z'))))))
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), x''), cons(y'', z'), cons(x'', del(if(le(x'', y''), min(x'', z'), min(y'', z')), cons(y'', z')))))
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(x'', x''), nil, cons(x'', nil)))
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(x'', x''), nil, cons(x'', nil)))
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), x''), cons(y'', z'), cons(x'', if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), y''), z', cons(y'', del(min(x'', cons(y'', z')), z'))))))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
eq(0, 0) -> true
eq(0, s(y)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
minsort(nil) -> nil
minsort(cons(x, y)) -> cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
min(x, nil) -> x
min(x, cons(y, z)) -> if(le(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, cons(y, z)) -> if(eq(x, y), z, cons(y, del(x, z)))
innermost
one new Dependency Pair is created:
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), x''), cons(y'', z'), cons(x'', del(if(le(x'', y''), min(x'', z'), min(y'', z')), cons(y'', z')))))
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), x''), cons(y'', z'), cons(x'', if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), y''), z', cons(y'', del(if(le(x'', y''), min(x'', z'), min(y'', z')), z'))))))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Rw
→DP Problem 10
↳Nar
...
→DP Problem 21
↳Rewriting Transformation
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), x''), cons(y'', z'), cons(x'', if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), y''), z', cons(y'', del(if(le(x'', y''), min(x'', z'), min(y'', z')), z'))))))
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), x''), cons(y'', z'), cons(x'', if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), y''), z', cons(y'', del(min(x'', cons(y'', z')), z'))))))
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), x''), cons(y'', z'), cons(x'', if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), y''), z', cons(y'', del(min(x'', cons(y'', z')), z'))))))
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(x'', x''), nil, cons(x'', nil)))
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(x'', x''), nil, cons(x'', nil)))
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(x'', x''), nil, cons(x'', nil)))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
eq(0, 0) -> true
eq(0, s(y)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
minsort(nil) -> nil
minsort(cons(x, y)) -> cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
min(x, nil) -> x
min(x, cons(y, z)) -> if(le(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, cons(y, z)) -> if(eq(x, y), z, cons(y, del(x, z)))
innermost
one new Dependency Pair is created:
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), x''), cons(y'', z'), cons(x'', if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), y''), z', cons(y'', del(min(x'', cons(y'', z')), z'))))))
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), x''), cons(y'', z'), cons(x'', if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), y''), z', cons(y'', del(if(le(x'', y''), min(x'', z'), min(y'', z')), z'))))))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Rw
→DP Problem 10
↳Nar
...
→DP Problem 22
↳Rewriting Transformation
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), x''), cons(y'', z'), cons(x'', if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), y''), z', cons(y'', del(if(le(x'', y''), min(x'', z'), min(y'', z')), z'))))))
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(x'', x''), nil, cons(x'', nil)))
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), x''), cons(y'', z'), cons(x'', if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), y''), z', cons(y'', del(min(x'', cons(y'', z')), z'))))))
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(x'', x''), nil, cons(x'', nil)))
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(x'', x''), nil, cons(x'', nil)))
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), x''), cons(y'', z'), cons(x'', if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), y''), z', cons(y'', del(if(le(x'', y''), min(x'', z'), min(y'', z')), z'))))))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
eq(0, 0) -> true
eq(0, s(y)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
minsort(nil) -> nil
minsort(cons(x, y)) -> cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
min(x, nil) -> x
min(x, cons(y, z)) -> if(le(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, cons(y, z)) -> if(eq(x, y), z, cons(y, del(x, z)))
innermost
one new Dependency Pair is created:
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), x''), cons(y'', z'), cons(x'', if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), y''), z', cons(y'', del(min(x'', cons(y'', z')), z'))))))
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), x''), cons(y'', z'), cons(x'', if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), y''), z', cons(y'', del(if(le(x'', y''), min(x'', z'), min(y'', z')), z'))))))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Rw
→DP Problem 10
↳Nar
...
→DP Problem 23
↳Remaining Obligation(s)
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), x''), cons(y'', z'), cons(x'', if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), y''), z', cons(y'', del(if(le(x'', y''), min(x'', z'), min(y'', z')), z'))))))
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), x''), cons(y'', z'), cons(x'', if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), y''), z', cons(y'', del(if(le(x'', y''), min(x'', z'), min(y'', z')), z'))))))
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(x'', x''), nil, cons(x'', nil)))
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(x'', x''), nil, cons(x'', nil)))
MINSORT(cons(x'', nil)) -> MINSORT(if(eq(x'', x''), nil, cons(x'', nil)))
MINSORT(cons(x'', cons(y'', z'))) -> MINSORT(if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), x''), cons(y'', z'), cons(x'', if(eq(if(le(x'', y''), min(x'', z'), min(y'', z')), y''), z', cons(y'', del(if(le(x'', y''), min(x'', z'), min(y'', z')), z'))))))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
eq(0, 0) -> true
eq(0, s(y)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
minsort(nil) -> nil
minsort(cons(x, y)) -> cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
min(x, nil) -> x
min(x, cons(y, z)) -> if(le(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, cons(y, z)) -> if(eq(x, y), z, cons(y, del(x, z)))
innermost