Term Rewriting System R:
[y, z, x]
f(cons(nil, y)) -> y
f(cons(f(cons(nil, y)), z)) -> copy(n, y, z)
copy(0, y, z) -> f(z)
copy(s(x), y, z) -> copy(x, y, cons(f(y), z))
Innermost Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
F(cons(f(cons(nil, y)), z)) -> COPY(n, y, z)
COPY(0, y, z) -> F(z)
COPY(s(x), y, z) -> COPY(x, y, cons(f(y), z))
COPY(s(x), y, z) -> F(y)
Furthermore, R contains one SCC.
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
Dependency Pair:
COPY(s(x), y, z) -> COPY(x, y, cons(f(y), z))
Rules:
f(cons(nil, y)) -> y
f(cons(f(cons(nil, y)), z)) -> copy(n, y, z)
copy(0, y, z) -> f(z)
copy(s(x), y, z) -> copy(x, y, cons(f(y), z))
Strategy:
innermost
The following dependency pair can be strictly oriented:
COPY(s(x), y, z) -> COPY(x, y, cons(f(y), z))
There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial
resulting in one new DP problem.
Used Argument Filtering System: COPY(x1, x2, x3) -> COPY(x1, x2, x3)
s(x1) -> s(x1)
cons(x1, x2) -> x2
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Dependency Graph
Dependency Pair:
Rules:
f(cons(nil, y)) -> y
f(cons(f(cons(nil, y)), z)) -> copy(n, y, z)
copy(0, y, z) -> f(z)
copy(s(x), y, z) -> copy(x, y, cons(f(y), z))
Strategy:
innermost
Using the Dependency Graph resulted in no new DP problems.
Innermost Termination of R successfully shown.
Duration:
0:00 minutes