R
↳Dependency Pair Analysis
MSORT(.(x, y)) -> MIN(x, y)
MSORT(.(x, y)) -> MSORT(del(min(x, y), .(x, y)))
MSORT(.(x, y)) -> DEL(min(x, y), .(x, y))
MIN(x, .(y, z)) -> MIN(x, z)
MIN(x, .(y, z)) -> MIN(y, z)
DEL(x, .(y, z)) -> DEL(x, z)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
MIN(x, .(y, z)) -> MIN(y, z)
MIN(x, .(y, z)) -> MIN(x, z)
msort(nil) -> nil
msort(.(x, y)) -> .(min(x, y), msort(del(min(x, y), .(x, y))))
min(x, nil) -> x
min(x, .(y, z)) -> if(<=(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, .(y, z)) -> if(=(x, y), z, .(y, del(x, z)))
innermost
MIN(x, .(y, z)) -> MIN(y, z)
MIN(x, .(y, z)) -> MIN(x, z)
POL(MIN(x1, x2)) = x2 POL(.(x1, x2)) = 1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 4
↳Dependency Graph
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
msort(nil) -> nil
msort(.(x, y)) -> .(min(x, y), msort(del(min(x, y), .(x, y))))
min(x, nil) -> x
min(x, .(y, z)) -> if(<=(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, .(y, z)) -> if(=(x, y), z, .(y, del(x, z)))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
→DP Problem 3
↳Polo
DEL(x, .(y, z)) -> DEL(x, z)
msort(nil) -> nil
msort(.(x, y)) -> .(min(x, y), msort(del(min(x, y), .(x, y))))
min(x, nil) -> x
min(x, .(y, z)) -> if(<=(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, .(y, z)) -> if(=(x, y), z, .(y, del(x, z)))
innermost
DEL(x, .(y, z)) -> DEL(x, z)
POL(DEL(x1, x2)) = x2 POL(.(x1, x2)) = 1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 5
↳Dependency Graph
→DP Problem 3
↳Polo
msort(nil) -> nil
msort(.(x, y)) -> .(min(x, y), msort(del(min(x, y), .(x, y))))
min(x, nil) -> x
min(x, .(y, z)) -> if(<=(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, .(y, z)) -> if(=(x, y), z, .(y, del(x, z)))
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polynomial Ordering
MSORT(.(x, y)) -> MSORT(del(min(x, y), .(x, y)))
msort(nil) -> nil
msort(.(x, y)) -> .(min(x, y), msort(del(min(x, y), .(x, y))))
min(x, nil) -> x
min(x, .(y, z)) -> if(<=(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, .(y, z)) -> if(=(x, y), z, .(y, del(x, z)))
innermost
MSORT(.(x, y)) -> MSORT(del(min(x, y), .(x, y)))
del(x, nil) -> nil
del(x, .(y, z)) -> if(=(x, y), z, .(y, del(x, z)))
POL(if(x1, x2, x3)) = 0 POL(MSORT(x1)) = x1 POL(=(x1, x2)) = 0 POL(min(x1, x2)) = 0 POL(nil) = 0 POL(.(x1, x2)) = 1 POL(del(x1, x2)) = 0 POL(<=(x1, x2)) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 6
↳Dependency Graph
msort(nil) -> nil
msort(.(x, y)) -> .(min(x, y), msort(del(min(x, y), .(x, y))))
min(x, nil) -> x
min(x, .(y, z)) -> if(<=(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, .(y, z)) -> if(=(x, y), z, .(y, del(x, z)))
innermost