R
↳Dependency Pair Analysis
MSORT(.(x, y)) -> MIN(x, y)
MSORT(.(x, y)) -> MSORT(del(min(x, y), .(x, y)))
MSORT(.(x, y)) -> DEL(min(x, y), .(x, y))
MIN(x, .(y, z)) -> MIN(x, z)
MIN(x, .(y, z)) -> MIN(y, z)
DEL(x, .(y, z)) -> DEL(x, z)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
→DP Problem 3
↳Rw
MIN(x, .(y, z)) -> MIN(y, z)
MIN(x, .(y, z)) -> MIN(x, z)
msort(nil) -> nil
msort(.(x, y)) -> .(min(x, y), msort(del(min(x, y), .(x, y))))
min(x, nil) -> x
min(x, .(y, z)) -> if(<=(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, .(y, z)) -> if(=(x, y), z, .(y, del(x, z)))
innermost
MIN(x, .(y, z)) -> MIN(y, z)
MIN(x, .(y, z)) -> MIN(x, z)
{MIN, .}
MIN(x1, x2) -> MIN(x1, x2)
.(x1, x2) -> .(x1, x2)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 4
↳Dependency Graph
→DP Problem 2
↳AFS
→DP Problem 3
↳Rw
msort(nil) -> nil
msort(.(x, y)) -> .(min(x, y), msort(del(min(x, y), .(x, y))))
min(x, nil) -> x
min(x, .(y, z)) -> if(<=(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, .(y, z)) -> if(=(x, y), z, .(y, del(x, z)))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
→DP Problem 3
↳Rw
DEL(x, .(y, z)) -> DEL(x, z)
msort(nil) -> nil
msort(.(x, y)) -> .(min(x, y), msort(del(min(x, y), .(x, y))))
min(x, nil) -> x
min(x, .(y, z)) -> if(<=(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, .(y, z)) -> if(=(x, y), z, .(y, del(x, z)))
innermost
DEL(x, .(y, z)) -> DEL(x, z)
trivial
DEL(x1, x2) -> DEL(x1, x2)
.(x1, x2) -> .(x1, x2)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 5
↳Dependency Graph
→DP Problem 3
↳Rw
msort(nil) -> nil
msort(.(x, y)) -> .(min(x, y), msort(del(min(x, y), .(x, y))))
min(x, nil) -> x
min(x, .(y, z)) -> if(<=(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, .(y, z)) -> if(=(x, y), z, .(y, del(x, z)))
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Rewriting Transformation
MSORT(.(x, y)) -> MSORT(del(min(x, y), .(x, y)))
msort(nil) -> nil
msort(.(x, y)) -> .(min(x, y), msort(del(min(x, y), .(x, y))))
min(x, nil) -> x
min(x, .(y, z)) -> if(<=(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, .(y, z)) -> if(=(x, y), z, .(y, del(x, z)))
innermost
one new Dependency Pair is created:
MSORT(.(x, y)) -> MSORT(del(min(x, y), .(x, y)))
MSORT(.(x, y)) -> MSORT(if(=(min(x, y), x), y, .(x, del(min(x, y), y))))