Term Rewriting System R:
[x, y, z]
f(x, g(y)) -> f(h(x), i(x, y))
i(x, j(0, 0)) -> g(0)
i(x, j(y, z)) -> j(g(y), i(x, z))
i(h(x), j(j(y, z), 0)) -> j(i(h(x), j(y, z)), i(x, j(y, z)))
j(g(x), g(y)) -> g(j(x, y))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

F(x, g(y)) -> F(h(x), i(x, y))
F(x, g(y)) -> I(x, y)
I(x, j(y, z)) -> J(g(y), i(x, z))
I(x, j(y, z)) -> I(x, z)
I(h(x), j(j(y, z), 0)) -> J(i(h(x), j(y, z)), i(x, j(y, z)))
I(h(x), j(j(y, z), 0)) -> I(h(x), j(y, z))
I(h(x), j(j(y, z), 0)) -> I(x, j(y, z))
J(g(x), g(y)) -> J(x, y)

Furthermore, R contains three SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
AFS
       →DP Problem 3
Remaining


Dependency Pair:

J(g(x), g(y)) -> J(x, y)


Rules:


f(x, g(y)) -> f(h(x), i(x, y))
i(x, j(0, 0)) -> g(0)
i(x, j(y, z)) -> j(g(y), i(x, z))
i(h(x), j(j(y, z), 0)) -> j(i(h(x), j(y, z)), i(x, j(y, z)))
j(g(x), g(y)) -> g(j(x, y))


Strategy:

innermost




The following dependency pair can be strictly oriented:

J(g(x), g(y)) -> J(x, y)


There are no usable rules for innermost that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
J(x1, x2) -> J(x1, x2)
g(x1) -> g(x1)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 4
Dependency Graph
       →DP Problem 2
AFS
       →DP Problem 3
Remaining


Dependency Pair:


Rules:


f(x, g(y)) -> f(h(x), i(x, y))
i(x, j(0, 0)) -> g(0)
i(x, j(y, z)) -> j(g(y), i(x, z))
i(h(x), j(j(y, z), 0)) -> j(i(h(x), j(y, z)), i(x, j(y, z)))
j(g(x), g(y)) -> g(j(x, y))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Argument Filtering and Ordering
       →DP Problem 3
Remaining


Dependency Pairs:

I(h(x), j(j(y, z), 0)) -> I(x, j(y, z))
I(h(x), j(j(y, z), 0)) -> I(h(x), j(y, z))
I(x, j(y, z)) -> I(x, z)


Rules:


f(x, g(y)) -> f(h(x), i(x, y))
i(x, j(0, 0)) -> g(0)
i(x, j(y, z)) -> j(g(y), i(x, z))
i(h(x), j(j(y, z), 0)) -> j(i(h(x), j(y, z)), i(x, j(y, z)))
j(g(x), g(y)) -> g(j(x, y))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

I(h(x), j(j(y, z), 0)) -> I(x, j(y, z))
I(h(x), j(j(y, z), 0)) -> I(h(x), j(y, z))
I(x, j(y, z)) -> I(x, z)


The following usable rule for innermost can be oriented:

j(g(x), g(y)) -> g(j(x, y))


Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
I(x1, x2) -> I(x1, x2)
h(x1) -> h(x1)
j(x1, x2) -> j(x1, x2)
g(x1) -> x1


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 5
Dependency Graph
       →DP Problem 3
Remaining


Dependency Pair:


Rules:


f(x, g(y)) -> f(h(x), i(x, y))
i(x, j(0, 0)) -> g(0)
i(x, j(y, z)) -> j(g(y), i(x, z))
i(h(x), j(j(y, z), 0)) -> j(i(h(x), j(y, z)), i(x, j(y, z)))
j(g(x), g(y)) -> g(j(x, y))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Remaining Obligation(s)




The following remains to be proven:
Dependency Pair:

F(x, g(y)) -> F(h(x), i(x, y))


Rules:


f(x, g(y)) -> f(h(x), i(x, y))
i(x, j(0, 0)) -> g(0)
i(x, j(y, z)) -> j(g(y), i(x, z))
i(h(x), j(j(y, z), 0)) -> j(i(h(x), j(y, z)), i(x, j(y, z)))
j(g(x), g(y)) -> g(j(x, y))


Strategy:

innermost



Innermost Termination of R could not be shown.
Duration:
0:00 minutes