Term Rewriting System R:
[x, y]
f(a) -> b
f(c) -> d
f(g(x, y)) -> g(f(x), f(y))
f(h(x, y)) -> g(h(y, f(x)), h(x, f(y)))
g(x, x) -> h(e, x)
Innermost Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
F(g(x, y)) -> G(f(x), f(y))
F(g(x, y)) -> F(x)
F(g(x, y)) -> F(y)
F(h(x, y)) -> G(h(y, f(x)), h(x, f(y)))
F(h(x, y)) -> F(x)
F(h(x, y)) -> F(y)
Furthermore, R contains one SCC.
R
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
Dependency Pairs:
F(h(x, y)) -> F(y)
F(h(x, y)) -> F(x)
F(g(x, y)) -> F(y)
F(g(x, y)) -> F(x)
Rules:
f(a) -> b
f(c) -> d
f(g(x, y)) -> g(f(x), f(y))
f(h(x, y)) -> g(h(y, f(x)), h(x, f(y)))
g(x, x) -> h(e, x)
Strategy:
innermost
As we are in the innermost case, we can delete all 5 non-usable-rules.
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Size-Change Principle
Dependency Pairs:
F(h(x, y)) -> F(y)
F(h(x, y)) -> F(x)
F(g(x, y)) -> F(y)
F(g(x, y)) -> F(x)
Rule:
none
Strategy:
innermost
We number the DPs as follows:
- F(h(x, y)) -> F(y)
- F(h(x, y)) -> F(x)
- F(g(x, y)) -> F(y)
- F(g(x, y)) -> F(x)
and get the following Size-Change Graph(s): {1, 2, 3, 4} | , | {1, 2, 3, 4} |
---|
1 | > | 1 |
|
which lead(s) to this/these maximal multigraph(s): {1, 2, 3, 4} | , | {1, 2, 3, 4} |
---|
1 | > | 1 |
|
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
g(x1, x2) -> g(x1, x2)
h(x1, x2) -> h(x1, x2)
We obtain no new DP problems.
Innermost Termination of R successfully shown.
Duration:
0:00 minutes