R
↳Dependency Pair Analysis
F(g(x, y)) -> G(f(x), f(y))
F(g(x, y)) -> F(x)
F(g(x, y)) -> F(y)
F(h(x, y)) -> G(h(y, f(x)), h(x, f(y)))
F(h(x, y)) -> F(x)
F(h(x, y)) -> F(y)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
F(h(x, y)) -> F(y)
F(h(x, y)) -> F(x)
F(g(x, y)) -> F(y)
F(g(x, y)) -> F(x)
f(a) -> b
f(c) -> d
f(g(x, y)) -> g(f(x), f(y))
f(h(x, y)) -> g(h(y, f(x)), h(x, f(y)))
g(x, x) -> h(e, x)
innermost
F(h(x, y)) -> F(y)
F(h(x, y)) -> F(x)
POL(g(x1, x2)) = x1 + x2 POL(h(x1, x2)) = 1 + x1 + x2 POL(F(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
F(g(x, y)) -> F(y)
F(g(x, y)) -> F(x)
f(a) -> b
f(c) -> d
f(g(x, y)) -> g(f(x), f(y))
f(h(x, y)) -> g(h(y, f(x)), h(x, f(y)))
g(x, x) -> h(e, x)
innermost
F(g(x, y)) -> F(y)
F(g(x, y)) -> F(x)
POL(g(x1, x2)) = 1 + x1 + x2 POL(F(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
...
→DP Problem 3
↳Dependency Graph
f(a) -> b
f(c) -> d
f(g(x, y)) -> g(f(x), f(y))
f(h(x, y)) -> g(h(y, f(x)), h(x, f(y)))
g(x, x) -> h(e, x)
innermost