R
↳Dependency Pair Analysis
S(f(x, y)) -> F(s(y), s(x))
S(f(x, y)) -> S(y)
S(f(x, y)) -> S(x)
S(g(x, y)) -> G(s(x), s(y))
S(g(x, y)) -> S(x)
S(g(x, y)) -> S(y)
F(g(x, y), g(u, v)) -> G(f(x, u), f(y, v))
F(g(x, y), g(u, v)) -> F(x, u)
F(g(x, y), g(u, v)) -> F(y, v)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
F(g(x, y), g(u, v)) -> F(y, v)
F(g(x, y), g(u, v)) -> F(x, u)
s(a) -> a
s(s(x)) -> x
s(f(x, y)) -> f(s(y), s(x))
s(g(x, y)) -> g(s(x), s(y))
f(x, a) -> x
f(a, y) -> y
f(g(x, y), g(u, v)) -> g(f(x, u), f(y, v))
g(a, a) -> a
innermost
F(g(x, y), g(u, v)) -> F(y, v)
F(g(x, y), g(u, v)) -> F(x, u)
POL(g(x1, x2)) = 1 + x1 + x2 POL(F(x1, x2)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 3
↳Dependency Graph
→DP Problem 2
↳Polo
s(a) -> a
s(s(x)) -> x
s(f(x, y)) -> f(s(y), s(x))
s(g(x, y)) -> g(s(x), s(y))
f(x, a) -> x
f(a, y) -> y
f(g(x, y), g(u, v)) -> g(f(x, u), f(y, v))
g(a, a) -> a
innermost
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
S(g(x, y)) -> S(y)
S(g(x, y)) -> S(x)
S(f(x, y)) -> S(x)
S(f(x, y)) -> S(y)
s(a) -> a
s(s(x)) -> x
s(f(x, y)) -> f(s(y), s(x))
s(g(x, y)) -> g(s(x), s(y))
f(x, a) -> x
f(a, y) -> y
f(g(x, y), g(u, v)) -> g(f(x, u), f(y, v))
g(a, a) -> a
innermost
S(g(x, y)) -> S(y)
S(g(x, y)) -> S(x)
POL(g(x1, x2)) = 1 + x1 + x2 POL(S(x1)) = x1 POL(f(x1, x2)) = x1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 4
↳Polynomial Ordering
S(f(x, y)) -> S(x)
S(f(x, y)) -> S(y)
s(a) -> a
s(s(x)) -> x
s(f(x, y)) -> f(s(y), s(x))
s(g(x, y)) -> g(s(x), s(y))
f(x, a) -> x
f(a, y) -> y
f(g(x, y), g(u, v)) -> g(f(x, u), f(y, v))
g(a, a) -> a
innermost
S(f(x, y)) -> S(x)
S(f(x, y)) -> S(y)
POL(S(x1)) = x1 POL(f(x1, x2)) = 1 + x1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 4
↳Polo
...
→DP Problem 5
↳Dependency Graph
s(a) -> a
s(s(x)) -> x
s(f(x, y)) -> f(s(y), s(x))
s(g(x, y)) -> g(s(x), s(y))
f(x, a) -> x
f(a, y) -> y
f(g(x, y), g(u, v)) -> g(f(x, u), f(y, v))
g(a, a) -> a
innermost