R
↳Dependency Pair Analysis
F(f(x, y, z), u, f(x, y, v)) -> F(x, y, f(z, u, v))
F(f(x, y, z), u, f(x, y, v)) -> F(z, u, v)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
F(f(x, y, z), u, f(x, y, v)) -> F(z, u, v)
F(f(x, y, z), u, f(x, y, v)) -> F(x, y, f(z, u, v))
f(f(x, y, z), u, f(x, y, v)) -> f(x, y, f(z, u, v))
f(x, y, y) -> y
f(x, y, g(y)) -> x
f(x, x, y) -> x
f(g(x), x, y) -> y
innermost
one new Dependency Pair is created:
F(f(x, y, z), u, f(x, y, v)) -> F(z, u, v)
F(f(x, y, f(x'0, y''', z'')), u'', f(x, y, f(x''', y'''', v''))) -> F(f(x'0, y''', z''), u'', f(x''', y'''', v''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Argument Filtering and Ordering
F(f(x, y, f(x'0, y''', z'')), u'', f(x, y, f(x''', y'''', v''))) -> F(f(x'0, y''', z''), u'', f(x''', y'''', v''))
F(f(x, y, z), u, f(x, y, v)) -> F(x, y, f(z, u, v))
f(f(x, y, z), u, f(x, y, v)) -> f(x, y, f(z, u, v))
f(x, y, y) -> y
f(x, y, g(y)) -> x
f(x, x, y) -> x
f(g(x), x, y) -> y
innermost
F(f(x, y, f(x'0, y''', z'')), u'', f(x, y, f(x''', y'''', v''))) -> F(f(x'0, y''', z''), u'', f(x''', y'''', v''))
F(f(x, y, z), u, f(x, y, v)) -> F(x, y, f(z, u, v))
f(f(x, y, z), u, f(x, y, v)) -> f(x, y, f(z, u, v))
f(x, y, y) -> y
f(x, y, g(y)) -> x
f(x, x, y) -> x
f(g(x), x, y) -> y
POL(g(x1)) = 1 + x1 POL(F(x1, x2, x3)) = 1 + x1 + x2 + x3 POL(f(x1, x2, x3)) = 1 + x1 + x2 + x3
F(x1, x2, x3) -> F(x1, x2, x3)
f(x1, x2, x3) -> f(x1, x2, x3)
g(x1) -> g(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳AFS
...
→DP Problem 3
↳Dependency Graph
f(f(x, y, z), u, f(x, y, v)) -> f(x, y, f(z, u, v))
f(x, y, y) -> y
f(x, y, g(y)) -> x
f(x, x, y) -> x
f(g(x), x, y) -> y
innermost