R
↳Dependency Pair Analysis
F(h(x)) -> F(i(x))
F(h(x)) -> I(x)
G(i(x)) -> G(h(x))
G(i(x)) -> H(x)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
F(h(x)) -> F(i(x))
f(h(x)) -> f(i(x))
g(i(x)) -> g(h(x))
h(a) -> b
i(a) -> b
innermost
F(h(x)) -> F(i(x))
i(a) -> b
POL(i(x1)) = x1 POL(b) = 0 POL(h(x1)) = 1 + x1 POL(a) = 0 POL(F(x1)) = x1
F(x1) -> F(x1)
h(x1) -> h(x1)
i(x1) -> i(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 3
↳Dependency Graph
→DP Problem 2
↳AFS
f(h(x)) -> f(i(x))
g(i(x)) -> g(h(x))
h(a) -> b
i(a) -> b
innermost
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
G(i(x)) -> G(h(x))
f(h(x)) -> f(i(x))
g(i(x)) -> g(h(x))
h(a) -> b
i(a) -> b
innermost
G(i(x)) -> G(h(x))
h(a) -> b
POL(i(x1)) = 1 + x1 POL(G(x1)) = x1 POL(b) = 0 POL(h(x1)) = x1 POL(a) = 0
G(x1) -> G(x1)
i(x1) -> i(x1)
h(x1) -> h(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 4
↳Dependency Graph
f(h(x)) -> f(i(x))
g(i(x)) -> g(h(x))
h(a) -> b
i(a) -> b
innermost