Term Rewriting System R:
[x, y, z]
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(x, +(y, z)) -> +(+(x, y), z)
f(g(f(x))) -> f(h(s(0), x))
f(g(h(x, y))) -> f(h(s(x), y))
f(h(x, h(y, z))) -> f(h(+(x, y), z))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

+'(x, s(y)) -> +'(x, y)
+'(s(x), y) -> +'(x, y)
+'(x, +(y, z)) -> +'(+(x, y), z)
+'(x, +(y, z)) -> +'(x, y)
F(g(f(x))) -> F(h(s(0), x))
F(g(h(x, y))) -> F(h(s(x), y))
F(h(x, h(y, z))) -> F(h(+(x, y), z))
F(h(x, h(y, z))) -> +'(x, y)

Furthermore, R contains two SCCs.


   R
DPs
       →DP Problem 1
Narrowing Transformation
       →DP Problem 2
Remaining


Dependency Pairs:

+'(x, +(y, z)) -> +'(x, y)
+'(x, +(y, z)) -> +'(+(x, y), z)
+'(s(x), y) -> +'(x, y)
+'(x, s(y)) -> +'(x, y)


Rules:


+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(x, +(y, z)) -> +(+(x, y), z)
f(g(f(x))) -> f(h(s(0), x))
f(g(h(x, y))) -> f(h(s(x), y))
f(h(x, h(y, z))) -> f(h(+(x, y), z))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

+'(x, +(y, z)) -> +'(+(x, y), z)
three new Dependency Pairs are created:

+'(0, +(y'', z)) -> +'(y'', z)
+'(s(x''), +(y'', z)) -> +'(s(+(x'', y'')), z)
+'(x'', +(+(y'', z''), z)) -> +'(+(+(x'', y''), z''), z)

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
       →DP Problem 2
Remaining Obligation(s)




The following remains to be proven:


   R
DPs
       →DP Problem 1
Nar
       →DP Problem 2
Remaining Obligation(s)




The following remains to be proven:

Innermost Termination of R could not be shown.
Duration:
0:00 minutes