R
↳Dependency Pair Analysis
+'(x, s(y)) -> +'(x, y)
+'(s(x), y) -> +'(x, y)
+'(x, +(y, z)) -> +'(+(x, y), z)
+'(x, +(y, z)) -> +'(x, y)
F(g(f(x))) -> F(h(s(0), x))
F(g(h(x, y))) -> F(h(s(x), y))
F(h(x, h(y, z))) -> F(h(+(x, y), z))
F(h(x, h(y, z))) -> +'(x, y)
R
↳DPs
→DP Problem 1
↳Narrowing Transformation
→DP Problem 2
↳Remaining
+'(x, +(y, z)) -> +'(x, y)
+'(x, +(y, z)) -> +'(+(x, y), z)
+'(s(x), y) -> +'(x, y)
+'(x, s(y)) -> +'(x, y)
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(x, +(y, z)) -> +(+(x, y), z)
f(g(f(x))) -> f(h(s(0), x))
f(g(h(x, y))) -> f(h(s(x), y))
f(h(x, h(y, z))) -> f(h(+(x, y), z))
innermost
three new Dependency Pairs are created:
+'(x, +(y, z)) -> +'(+(x, y), z)
+'(0, +(y'', z)) -> +'(y'', z)
+'(s(x''), +(y'', z)) -> +'(s(+(x'', y'')), z)
+'(x'', +(+(y'', z''), z)) -> +'(+(+(x'', y''), z''), z)
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Remaining Obligation(s)
+'(x'', +(+(y'', z''), z)) -> +'(+(+(x'', y''), z''), z)
+'(s(x''), +(y'', z)) -> +'(s(+(x'', y'')), z)
+'(x, s(y)) -> +'(x, y)
+'(s(x), y) -> +'(x, y)
+'(x, +(y, z)) -> +'(x, y)
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(x, +(y, z)) -> +(+(x, y), z)
f(g(f(x))) -> f(h(s(0), x))
f(g(h(x, y))) -> f(h(s(x), y))
f(h(x, h(y, z))) -> f(h(+(x, y), z))
innermost
F(h(x, h(y, z))) -> F(h(+(x, y), z))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(x, +(y, z)) -> +(+(x, y), z)
f(g(f(x))) -> f(h(s(0), x))
f(g(h(x, y))) -> f(h(s(x), y))
f(h(x, h(y, z))) -> f(h(+(x, y), z))
innermost
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Remaining Obligation(s)
+'(x'', +(+(y'', z''), z)) -> +'(+(+(x'', y''), z''), z)
+'(s(x''), +(y'', z)) -> +'(s(+(x'', y'')), z)
+'(x, s(y)) -> +'(x, y)
+'(s(x), y) -> +'(x, y)
+'(x, +(y, z)) -> +'(x, y)
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(x, +(y, z)) -> +(+(x, y), z)
f(g(f(x))) -> f(h(s(0), x))
f(g(h(x, y))) -> f(h(s(x), y))
f(h(x, h(y, z))) -> f(h(+(x, y), z))
innermost
F(h(x, h(y, z))) -> F(h(+(x, y), z))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(x, +(y, z)) -> +(+(x, y), z)
f(g(f(x))) -> f(h(s(0), x))
f(g(h(x, y))) -> f(h(s(x), y))
f(h(x, h(y, z))) -> f(h(+(x, y), z))
innermost