Term Rewriting System R:
[y, x, z]
f(a, g(y)) -> g(g(y))
f(g(x), a) -> f(x, g(a))
f(g(x), g(y)) -> h(g(y), x, g(y))
h(g(x), y, z) -> f(y, h(x, y, z))
h(a, y, z) -> z
Innermost Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
F(g(x), a) -> F(x, g(a))
F(g(x), g(y)) -> H(g(y), x, g(y))
H(g(x), y, z) -> F(y, h(x, y, z))
H(g(x), y, z) -> H(x, y, z)
Furthermore, R contains one SCC.
R
↳DPs
→DP Problem 1
↳Size-Change Principle
Dependency Pairs:
H(g(x), y, z) -> H(x, y, z)
H(g(x), y, z) -> F(y, h(x, y, z))
F(g(x), g(y)) -> H(g(y), x, g(y))
F(g(x), a) -> F(x, g(a))
Rules:
f(a, g(y)) -> g(g(y))
f(g(x), a) -> f(x, g(a))
f(g(x), g(y)) -> h(g(y), x, g(y))
h(g(x), y, z) -> f(y, h(x, y, z))
h(a, y, z) -> z
Strategy:
innermost
We number the DPs as follows:
- H(g(x), y, z) -> H(x, y, z)
- H(g(x), y, z) -> F(y, h(x, y, z))
- F(g(x), g(y)) -> H(g(y), x, g(y))
- F(g(x), a) -> F(x, g(a))
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
g(x1) -> g(x1)
We obtain no new DP problems.
Innermost Termination of R successfully shown.
Duration:
0:00 minutes